IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p153-d1013321.html
   My bibliography  Save this article

Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses

Author

Listed:
  • Boud Verbrugge

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Haaris Rasool

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Mohammed Mahedi Hasan

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Sajib Chakraborty

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Thomas Geury

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Mohamed El Baghdadi

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (MOBI-EPOWERS Research Group, ETEC Department, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium
    Flanders Make, Gaston Geenslaan 8, 3001 Heverlee, Belgium)

Abstract

Nowadays, the implementation of smart charging concepts and management strategies with vehicle-to-everything (V2X) functionalities, is required to address the increasing number of battery electric buses (BEBs) in cities. However, the introduction of these new functionalities to the charging systems might affect the lifetime of the charging infrastructure. This has not been investigated yet, although it is an important aspect for the BEB operators. Therefore, this paper performs a detailed reliability assessment to study the impact of smart and bidirectional (V2X) charging on the lifetime of SiC-based high-power off-board charging infrastructure used for BEBs in a depot for overnight charging. In this paper, four different charging current profiles, generated by a smart charging algorithm, are considered. In addition, an electro-thermal model of the charging system is developed to accurately estimate the junction temperature of the switching devices when subjected to the applied charging current profiles. The thermal stress is converted into a number of cycles to failures and accumulated damage by means of a rainflow cycle counting algorithm, a lifetime model and Miner’s damage rule. Finally, a Monte Carlo analysis and a Weibull probability function fit are applied to obtain the system reliability. The results have demonstrated that smart charging strategies can improve the lifetime of the charging system by at least a factor of three compared to conventional uncoordinated charging. Moreover, an uncoordinated charging strategy fails to fulfill the lifetime requirements in the parts per million range, while bidirectional charging could even further enhance the lifetime with a factor of one and a half.

Suggested Citation

  • Boud Verbrugge & Haaris Rasool & Mohammed Mahedi Hasan & Sajib Chakraborty & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Reliability Assessment of SiC-Based Depot Charging Infrastructure with Smart and Bidirectional (V2X) Charging Strategies for Electric Buses," Energies, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:153-:d:1013321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Xiaofeng & Du, Min & Zhou, Tong & Guo, Hong & Zhang, Chengming, 2017. "Comprehensive comparison between silicon carbide MOSFETs and silicon IGBTs based traction systems for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 626-634.
    2. Manzolli, Jônatas Augusto & Trovão, João Pedro F. & Henggeler Antunes, Carlos, 2022. "Electric bus coordinated charging strategy considering V2G and battery degradation," Energy, Elsevier, vol. 254(PA).
    3. Haaris Rasool & Boud Verbrugge & Shahid Jaman & Ekaterina Abramushkina & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Design and Real-Time Implementation of a Control System for SiC Off-Board Chargers of Battery Electric Buses," Energies, MDPI, vol. 15(4), pages 1-19, February.
    4. Adnane Houbbadi & Rochdi Trigui & Serge Pelissier & Eduardo Redondo-Iglesias & Tanguy Bouton, 2019. "Optimal Scheduling to Manage an Electric Bus Fleet Overnight Charging," Energies, MDPI, vol. 12(14), pages 1-17, July.
    5. Boud Verbrugge & Abdul Mannan Rauf & Haaris Rasool & Mohamed Abdel-Monem & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Real-Time Charging Scheduling and Optimization of Electric Buses in a Depot," Energies, MDPI, vol. 15(14), pages 1-18, July.
    6. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    7. Pearre, Nathaniel S. & Ribberink, Hajo, 2019. "Review of research on V2X technologies, strategies, and operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 61-70.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Amra Jahic & Felix Heider & Maik Plenz & Detlef Schulz, 2022. "Flexibility Quantification and the Potential for Its Usage in the Case of Electric Bus Depots with Unidirectional Charging," Energies, MDPI, vol. 15(10), pages 1-18, May.
    3. Boud Verbrugge & Abdul Mannan Rauf & Haaris Rasool & Mohamed Abdel-Monem & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Real-Time Charging Scheduling and Optimization of Electric Buses in a Depot," Energies, MDPI, vol. 15(14), pages 1-18, July.
    4. Zhou, Yu & Meng, Qiang & Ong, Ghim Ping, 2022. "Electric Bus Charging Scheduling for a Single Public Transport Route Considering Nonlinear Charging Profile and Battery Degradation Effect," Transportation Research Part B: Methodological, Elsevier, vol. 159(C), pages 49-75.
    5. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Reza Fachrizal & Joakim Munkhammar, 2020. "Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles," Energies, MDPI, vol. 13(5), pages 1-19, March.
    7. Paulo J. G. Ribeiro & José F. G. Mendes, 2022. "Towards Zero CO 2 Emissions from Public Transport: The Pathway to the Decarbonization of the Portuguese Urban Bus Fleet," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    8. Xiaofeng Ding & Min Du & Jiawei Cheng & Feida Chen & Suping Ren & Hong Guo, 2017. "Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-19, March.
    9. Perumal, Shyam S.G. & Lusby, Richard M. & Larsen, Jesper, 2022. "Electric bus planning & scheduling: A review of related problems and methodologies," European Journal of Operational Research, Elsevier, vol. 301(2), pages 395-413.
    10. Rodrigo Antonio Sbardeloto Kraemer & Paula Zenni Lodetti & Alisson Carlos da Silva & Beatriz Batista Cardoso & Ivangelo Vicente & Marcos Aurelio Izumida Martins & Adriano de Paula Simões & Newmar Spad, 2023. "Regulatory Challenges in the Electromobility Sector: An Analysis of Electric Buses in Brazil," Energies, MDPI, vol. 16(8), pages 1-28, April.
    11. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    12. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    13. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Basma, Hussein & Haddad, Marc & Mansour, Charbel & Nemer, Maroun & Stabat, Pascal, 2022. "Evaluation of the techno-economic performance of battery electric buses: Case study of a bus line in paris," Research in Transportation Economics, Elsevier, vol. 95(C).
    15. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    16. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    17. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    18. Roberto de Fazio & Donato Cafagna & Giorgio Marcuccio & Paolo Visconti, 2020. "Limitations and Characterization of Energy Storage Devices for Harvesting Applications," Energies, MDPI, vol. 13(4), pages 1-18, February.
    19. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2021. "Rate design with distributed energy resources and electric vehicles: A Californian case study," Energy Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:153-:d:1013321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.