IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p2094-d770161.html
   My bibliography  Save this article

Influence of the Number of Ground Motions on Fragility Analysis of 5 MW Wind Turbines Subjected to Aerodynamic and Seismic Loads Interaction

Author

Listed:
  • Chenyang Yuan

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Yunfei Xie

    (School of Architecture, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Jing Li

    (Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China)

  • Weifeng Bai

    (School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Haohao Li

    (Henan Province Tobacco Company Luoyang Company, Luoyang 471012, China)

Abstract

In this paper, the influence of the number of ground motions on fragility analysis of 5 MW wind turbines under the excitation of aerodynamic and seismic loads is investigated to acquire the sufficient number of records for reasonable fragility estimation. Two scenarios, parked and normal operation, were simulated with the number of actual recorded ground motions ranging from 2 to 48. The fragility function parameters are estimated by utilizing the method of multiple stripe analysis (MSA), and the relationship between the number of ground motions and estimated parameters for each scenario is discussed. In addition, the influence of the number of ground motions on the range of estimated parameters with a 95% confidence interval is also discussed. The simulation results show that there are significant differences between the two scenarios in terms of fragility analysis for 5 MW wind turbines with the interaction of wind and seismic loads, and the lesser number of earthquakes is needed for a normal operation scenario compared to the parked scenario when obtaining the same accuracy fragility estimation. Furthermore, the appropriate number of ground motions to accurately estimate the fragility parameters of 5 MW wind turbines for the two scenarios is presented herein, which is almost unaffected by different wind spectra.

Suggested Citation

  • Chenyang Yuan & Yunfei Xie & Jing Li & Weifeng Bai & Haohao Li, 2022. "Influence of the Number of Ground Motions on Fragility Analysis of 5 MW Wind Turbines Subjected to Aerodynamic and Seismic Loads Interaction," Energies, MDPI, vol. 15(6), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2094-:d:770161
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/2094/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/2094/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thanh-Tuan Tran & Sangkyun Kang & Jang-Ho Lee & Daeyong Lee, 2021. "Directional Bending Performance of 4-Leg Jacket Substructure Supporting a 3MW Offshore Wind Turbine," Energies, MDPI, vol. 14(9), pages 1-17, May.
    2. Adrián Pozos-Estrada & Marcos M. Chávez & Miguel Á. Jaimes & Oriol Arnau & Héctor Guerrero, 2019. "Damages observed in locations of Oaxaca due to the Tehuantepec Mw8.2 earthquake, Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 623-641, June.
    3. Zuo, Haoran & Bi, Kaiming & Hao, Hong & Xin, Yu & Li, Jun & Li, Chao, 2020. "Fragility analyses of offshore wind turbines subjected to aerodynamic and sea wave loadings," Renewable Energy, Elsevier, vol. 160(C), pages 1269-1282.
    4. Kim, Dong Hyawn & Lee, Sang Geun & Lee, Il Keun, 2014. "Seismic fragility analysis of 5 MW offshore wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 250-256.
    5. Congcong Jin & Shichun Chi, 2019. "Seismic Fragility Analysis of High Earth-Rockfill Dams considering the Number of Ground Motion Records," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-12, February.
    6. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    7. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    8. Asareh, Mohammad-Amin & Schonberg, William & Volz, Jeffery, 2016. "Effects of seismic and aerodynamic load interaction on structural dynamic response of multi-megawatt utility scale horizontal axis wind turbines," Renewable Energy, Elsevier, vol. 86(C), pages 49-58.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fitzgerald, Breiffni & McAuliffe, James & Baisthakur, Shubham & Sarkar, Saptarshi, 2023. "Enhancing the reliability of floating offshore wind turbine towers subjected to misaligned wind-wave loading using tuned mass damper inerters (TMDIs)," Renewable Energy, Elsevier, vol. 211(C), pages 522-538.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yang & Bashir, Musa & Li, Chun & Michailides, Constantine & Wang, Jin, 2020. "Mitigation of coupled wind-wave-earthquake responses of a 10 MW fixed-bottom offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 1171-1184.
    2. Mo, Renjie & Cao, Renjing & Liu, Minghou & Li, Miao, 2021. "Effect of ground motion directionality on seismic dynamic responses of monopile offshore wind turbines," Renewable Energy, Elsevier, vol. 175(C), pages 179-199.
    3. Fitzgerald, Breiffni & McAuliffe, James & Baisthakur, Shubham & Sarkar, Saptarshi, 2023. "Enhancing the reliability of floating offshore wind turbine towers subjected to misaligned wind-wave loading using tuned mass damper inerters (TMDIs)," Renewable Energy, Elsevier, vol. 211(C), pages 522-538.
    4. Zheng, Hua-Dong & Wang, Xian-Feng & Liu, Chen-Xi & Wang, Zhen & Wu, Bin, 2022. "Nonlinear seismic performance of a large-scale vertical-axis wind turbine under wind and earthquake action," Renewable Energy, Elsevier, vol. 200(C), pages 24-36.
    5. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    6. Yuan, Chenyang & Chen, Jianyun & Li, Jing & Xu, Qiang, 2017. "Fragility analysis of large-scale wind turbines under the combination of seismic and aerodynamic loads," Renewable Energy, Elsevier, vol. 113(C), pages 1122-1134.
    7. Georgios Malliotakis & Panagiotis Alevras & Charalampos Baniotopoulos, 2021. "Recent Advances in Vibration Control Methods for Wind Turbine Towers," Energies, MDPI, vol. 14(22), pages 1-37, November.
    8. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    9. Renqiang Xi & Piguang Wang & Xiuli Du & Chengshun Xu & Junbo Jia, 2020. "Evaluation of an Uncoupled Method for Analyzing the Seismic Response of Wind Turbines Excited by Wind and Earthquake Loads," Energies, MDPI, vol. 13(15), pages 1-27, July.
    10. Alberto Maria Avossa & Cristoforo Demartino & Pasquale Contestabile & Francesco Ricciardelli & Diego Vicinanza, 2017. "Some Results on the Vulnerability Assessment of HAWTs Subjected to Wind and Seismic Actions," Sustainability, MDPI, vol. 9(9), pages 1-16, August.
    11. Zuo, Haoran & Bi, Kaiming & Hao, Hong & Xin, Yu & Li, Jun & Li, Chao, 2020. "Fragility analyses of offshore wind turbines subjected to aerodynamic and sea wave loadings," Renewable Energy, Elsevier, vol. 160(C), pages 1269-1282.
    12. Jian Zhang & Guo-Kai Yuan & Songye Zhu & Quan Gu & Shitang Ke & Jinghua Lin, 2022. "Seismic Analysis of 10 MW Offshore Wind Turbine with Large-Diameter Monopile in Consideration of Seabed Liquefaction," Energies, MDPI, vol. 15(7), pages 1-31, March.
    13. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    14. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    15. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.
    16. Li, Zhiguo & Gao, Zhiying & Chen, Yongyan & Zhang, Liru & Wang, Jianwen, 2022. "A novel time-variant prediction model for megawatt flexible wind turbines and its application in NTM and ECD conditions," Renewable Energy, Elsevier, vol. 196(C), pages 1158-1169.
    17. Cong, Shuai & James Hu, Sau-Lon & Li, Hua-Jun, 2022. "Using incomplete complex modes for model updating of monopiled offshore wind turbines," Renewable Energy, Elsevier, vol. 181(C), pages 522-534.
    18. Wei, K. & Arwade, S.R. & Myers, A.T. & Hallowell, S. & Hajjar, J.F. & Hines, E.M. & Pang, W., 2016. "Toward performance-based evaluation for offshore wind turbine jacket support structures," Renewable Energy, Elsevier, vol. 97(C), pages 709-721.
    19. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    20. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Study of the Bearing Capacity of Stiffened Tall Offshore Wind Turbine Towers during the Erection Phase," Energies, MDPI, vol. 13(19), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:2094-:d:770161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.