IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v165y2022ics1364032122004518.html
   My bibliography  Save this article

Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models

Author

Listed:
  • Seo, Junwon
  • Pokhrel, Jharna
  • Hu, Jong Wan

Abstract

This paper deals with a surrogate modeling-based fragility estimate of monopile offshore wind turbine (OWT) towers subjected to wind and wave loadings. The monopile 5-MW OWT specified by the National Renewable Energy Laboratory (NREL), United States was used as the base model for this study. Aero- and hydrodynamic simulations of the OWT were first performed via Fatigue, Aerodynamics, Structures, and Turbulence (FAST) developed by the NREL to determine its critical wave-and-wind responses, to determine peak tower top deflections, flexural moments, and shear forces. Through least squares regression with the simulation data, two surrogate models, Response Surface Metamodel (RSM) and Stepwise Multiple Linear Regression (SMLR) were developed to predict the critical OWT responses caused by both wind and wave loads and to develop its fragility curves at a low computational cost. Responses and fragility curves resulting from each of the surrogate models were compared to those from the FAST simulation, demonstrating the effectiveness of the RSM in terms of accuracy to replicate the FAST results. As a result of the comparison, the RSM was adopted as the final model to estimate the multi-wind-and-wave vulnerability of the OWT in terms of fragility surfaces considering uncertainties in a broad spectrum of its loads and capacities. Major findings indicated that the wind speed was observed to be the most critical load parameter for peak tower top deflections with response observed in the range of 2.2 5 m at a wind speed of 5 m/s to 5.5 m at 70 m/s, while the wave height appeared to be the major contributor to the vulnerability on flexural moments with the observed peak value of 1.75 × 108 Nm at a wave height of 1 m increased to 5.75 × 108 Nm at 20 m. It was also found that structural characteristics parameters related to the OWT's capacities, including hub height, rotor diameter, and monopile thickness have a significant impact on the overall vulnerability with one-quarter exceeding probability for mudline flexure was noted at 83.26 m, 151 m, and 0.133 m, respectively.

Suggested Citation

  • Seo, Junwon & Pokhrel, Jharna & Hu, Jong Wan, 2022. "Multi-Hazard Fragility Analysis of Offshore Wind Turbine Portfolios using Surrogate Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
  • Handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004518
    DOI: 10.1016/j.rser.2022.112552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122004518
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Dong Hyawn & Lee, Sang Geun, 2015. "Reliability analysis of offshore wind turbine support structures under extreme ocean environmental loads," Renewable Energy, Elsevier, vol. 79(C), pages 161-166.
    2. Lozano-Minguez, E. & Kolios, A.J. & Brennan, F.P., 2011. "Multi-criteria assessment of offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 36(11), pages 2831-2837.
    3. Kim, Dong Hyawn & Lee, Sang Geun & Lee, Il Keun, 2014. "Seismic fragility analysis of 5 MW offshore wind turbine," Renewable Energy, Elsevier, vol. 65(C), pages 250-256.
    4. Shi, Wei & Han, Jonghoon & Kim, Changwan & Lee, Daeyong & Shin, Hyunkyoung & Park, Hyunchul, 2015. "Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea," Renewable Energy, Elsevier, vol. 74(C), pages 406-413.
    5. Pokhrel, Jharna & Seo, Junwon, 2021. "Statistical model for fragility estimates of offshore wind turbines subjected to aero-hydro dynamic loads," Renewable Energy, Elsevier, vol. 163(C), pages 1495-1507.
    6. Maki, Kevin & Sbragio, Ricardo & Vlahopoulos, Nickolas, 2012. "System design of a wind turbine using a multi-level optimization approach," Renewable Energy, Elsevier, vol. 43(C), pages 101-110.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    2. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.
    3. Thanh-Tuan Tran & Sangkyun Kang & Jang-Ho Lee & Daeyong Lee, 2021. "Directional Bending Performance of 4-Leg Jacket Substructure Supporting a 3MW Offshore Wind Turbine," Energies, MDPI, vol. 14(9), pages 1-17, May.
    4. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    5. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    6. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    7. Duc-Vu Ngo & Young-Jin Kim & Dong-Hyawn Kim, 2023. "Risk Assessment of Offshore Wind Turbines Suction Bucket Foundation Subject to Multi-Hazard Events," Energies, MDPI, vol. 16(5), pages 1-13, February.
    8. Yan, Yangtian & Yang, Yang & Bashir, Musa & Li, Chun & Wang, Jin, 2022. "Dynamic analysis of 10 MW offshore wind turbines with different support structures subjected to earthquake loadings," Renewable Energy, Elsevier, vol. 193(C), pages 758-777.
    9. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    10. Michael O. Ukoba & Ogheneruona E. Diemuodeke & Mohammed Alghassab & Henry I. Njoku & Muhammad Imran & Zafar A. Khan, 2020. "Composite Multi-Criteria Decision Analysis for Optimization of Hybrid Renewable Energy Systems for Geopolitical Zones in Nigeria," Sustainability, MDPI, vol. 12(14), pages 1-27, July.
    11. Zilong, Ti & Xiao Wei, Deng, 2022. "Layout optimization of offshore wind farm considering spatially inhomogeneous wave loads," Applied Energy, Elsevier, vol. 306(PA).
    12. Chen, Z.J. & Stol, K.A. & Mace, B.R., 2017. "Wind turbine blade optimisation with individual pitch and trailing edge flap control," Renewable Energy, Elsevier, vol. 103(C), pages 750-765.
    13. Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
    14. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    15. Song, Yupeng & Basu, Biswajit & Zhang, Zili & Sørensen, John Dalsgaard & Li, Jie & Chen, Jianbing, 2021. "Dynamic reliability analysis of a floating offshore wind turbine under wind-wave joint excitations via probability density evolution method," Renewable Energy, Elsevier, vol. 168(C), pages 991-1014.
    16. Yu Hu & Jian Yang & Charalampos Baniotopoulos, 2020. "Repowering Steel Tubular Wind Turbine Towers Enhancing them by Internal Stiffening Rings," Energies, MDPI, vol. 13(7), pages 1-23, March.
    17. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    18. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    19. Diemuodeke, E.O. & Addo, A. & Oko, C.O.C. & Mulugetta, Y. & Ojapah, M.M., 2019. "Optimal mapping of hybrid renewable energy systems for locations using multi-criteria decision-making algorithm," Renewable Energy, Elsevier, vol. 134(C), pages 461-477.
    20. McInerney, Celine & Bunn, Derek W., 2017. "Optimal over installation of wind generation facilities," Energy Economics, Elsevier, vol. 61(C), pages 87-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:165:y:2022:i:c:s1364032122004518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.