IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i4p1535-d753365.html
   My bibliography  Save this article

Comparison of China’s Biomass Combustion Power Generation with Different Installed Capacities

Author

Listed:
  • Xiaocheng Zhu

    (School of Marxism, University of Chinese Academy of Social Sciences, Beijing 100732, China)

  • Yanru Zhang

    (National Bio Energy Co., Ltd., Beijing 100052, China)

  • Zhenzhong Wang

    (School of Marxism, University of Chinese Academy of Social Sciences, Beijing 100732, China)

  • Xunzhang Pan

    (School of Economics and Management, China University of Petroleum, Beijing 102249, China)

Abstract

As a major technical route to utilize biomass energy, biomass combustion power generation (BCPG) has been shown to be of environmental and economic significance. According to the operating experience, the installed capacity has a decisive impact on the operation and economic return of BCPG projects. In China, an installed capacity of either 30 MW or 12 MW is often chosen for constructing a BCPG project. To explore which one is more suitable for China, this paper uses actual operating data to compare the operation performance and techno-economics of two representative BCPG projects with an installed capacity of 30 MW and 12 MW. The results show that the operation situation and electricity production of the 30 MW project are better than those of the 12 MW project. The 30 MW project has a lower biomass consumption than the 12 MW project to produce per unit of electricity. The Internal Rate of Return (IRR) of the 30 MW project is greater than the industry benchmark in China and is almost three times the IRR of the 12 MW project. Therefore, it is recommended to construct BCPG projects with installed capacity of 30 MW in China.

Suggested Citation

  • Xiaocheng Zhu & Yanru Zhang & Zhenzhong Wang & Xunzhang Pan, 2022. "Comparison of China’s Biomass Combustion Power Generation with Different Installed Capacities," Energies, MDPI, vol. 15(4), pages 1-8, February.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1535-:d:753365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/4/1535/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/4/1535/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Qin & Zhou, Dequn & Fang, Xiaomeng, 2014. "Analysis on the policies of biomass power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 926-935.
    2. Wright, Daniel G. & Dey, Prasanta K. & Brammer, John, 2014. "A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK," Energy, Elsevier, vol. 71(C), pages 332-345.
    3. López Prol, Javier & Steininger, Karl W., 2020. "Photovoltaic self-consumption is now profitable in Spain: Effects of the new regulation on prosumers’ internal rate of return," Energy Policy, Elsevier, vol. 146(C).
    4. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    5. Talavera, D.L. & Nofuentes, G. & Aguilera, J., 2010. "The internal rate of return of photovoltaic grid-connected systems: A comprehensive sensitivity analysis," Renewable Energy, Elsevier, vol. 35(1), pages 101-111.
    6. Huang, Xiaodan & Chang, Shiyan & Zheng, Dingqian & Zhang, Xiliang, 2020. "The role of BECCS in deep decarbonization of China's economy: A computable general equilibrium analysis," Energy Economics, Elsevier, vol. 92(C).
    7. McIlveen-Wright, David R. & Huang, Ye & Rezvani, Sina & Redpath, David & Anderson, Mark & Dave, Ashok & Hewitt, Neil J., 2013. "A technical and economic analysis of three large scale biomass combustion plants in the UK," Applied Energy, Elsevier, vol. 112(C), pages 396-404.
    8. Zhao, Zhen-yu & Yan, Hong, 2012. "Assessment of the biomass power generation industry in China," Renewable Energy, Elsevier, vol. 37(1), pages 53-60.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    2. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    3. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    4. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    5. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    6. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    7. Vera, Luis & Sun, Wei & Iftikhar, Maria & Liu, Junteng, 2015. "LCA based comparative study of a microbial oil production starch wastewater treatment plant and its improvements with the combination of CHP system in Shandong, China," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 1-10.
    8. Zhao Xin-gang & Wang Wei & Hu Shuran & Liu Xuan, 2023. "Impacts of Government Policies on the Adoption of Biomass Power: A System Dynamic Perspective," Sustainability, MDPI, vol. 15(2), pages 1-11, January.
    9. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    10. Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
    11. Zhao, Zhen-Yu & Zuo, Jian & Wu, Pan-Hao & Yan, Hong & Zillante, George, 2016. "Competitiveness assessment of the biomass power generation industry in China: A five forces model study," Renewable Energy, Elsevier, vol. 89(C), pages 144-153.
    12. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    13. de Oliveira, Lucas Guedes & Aquila, Giancarlo & Balestrassi, Pedro Paulo & de Paiva, Anderson Paulo & de Queiroz, Anderson Rodrigo & de Oliveira Pamplona, Edson & Camatta, Ulisses Pessin, 2020. "Evaluating economic feasibility and maximization of social welfare of photovoltaic projects developed for the Brazilian northeastern coast: An attribute agreement analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    14. Yuan, Jiahang & Luo, Xinggang & Ding, Xianghai & Liu, Chunlai & Li, Cunbin, 2019. "Biomass power generation fuel procurement and storage modes evaluation: A case study in Jilin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 75-86.
    15. Fernando Echevarría Camarero & Ana Ogando-Martínez & Pablo Durán Gómez & Pablo Carrasco Ortega, 2022. "Profitability of Batteries in Photovoltaic Systems for Small Industrial Consumers in Spain under Current Regulatory Framework and Energy Prices," Energies, MDPI, vol. 16(1), pages 1-19, December.
    16. Oliva H, Sebastian, 2018. "Assessing the growth of residential PV exports with energy efficiency and the opportunity for local generation network credits," Renewable Energy, Elsevier, vol. 121(C), pages 451-459.
    17. Zhang, Xingping & Luo, Kaiyan & Tan, Qinliang, 2016. "A feedstock supply model integrating the official organization for China's biomass generation plants," Energy Policy, Elsevier, vol. 97(C), pages 276-290.
    18. Cucchiella, Federica & D’Adamo, Idiano, 2012. "Feasibility study of developing photovoltaic power projects in Italy: An integrated approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1562-1576.
    19. Huang, Y. & Wang, Y.D. & Chen, Haisheng & Zhang, Xinjing & Mondol, J. & Shah, N. & Hewitt, N.J., 2017. "Performance analysis of biofuel fired trigeneration systems with energy storage for remote households," Applied Energy, Elsevier, vol. 186(P3), pages 530-538.
    20. Marchioni, Andrea & Magni, Carlo Alberto, 2018. "Investment decisions and sensitivity analysis: NPV-consistency of rates of return," European Journal of Operational Research, Elsevier, vol. 268(1), pages 361-372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:4:p:1535-:d:753365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.