IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i1p101-111.html

The internal rate of return of photovoltaic grid-connected systems: A comprehensive sensitivity analysis

Author

Listed:
  • Talavera, D.L.
  • Nofuentes, G.
  • Aguilera, J.

Abstract

At present, photovoltaic grid-connected systems (PVGCS) are experiencing a formidable market growth. This is mainly due to a continuous downward trend in PV cost together with some government support programmes launched by many developed countries. However, government bodies and prospective owners/investors are concerned with how changes in existing economic factors – financial incentives and main economic parameters of the PVGCS – that configure a given scenario may affect the profitability of the investment in these systems. Consequently, not only is a mere estimate of the economic profitability in a specific moment required, but also how this profitability may vary according to changes in the existing scenario. In order to enlighten decision-makers and prospective owners/investors of PVGCS, a sensitivity analysis of the internal rate of return (IRR) to some economic factors has been carried out. Three different scenarios have been assumed to represent the three top geographical markets for PV: the Euro area, the USA and Japan. The results obtained in this analysis provide clear evidence that annual loan interest, normalised initial investment subsidy, normalised annual PV electricity yield, PV electricity unitary price and normalised initial investment are ordered from the lowest to the highest impact on the IRR. A short and broad analysis concerning the taxation impact is also provided.

Suggested Citation

  • Talavera, D.L. & Nofuentes, G. & Aguilera, J., 2010. "The internal rate of return of photovoltaic grid-connected systems: A comprehensive sensitivity analysis," Renewable Energy, Elsevier, vol. 35(1), pages 101-111.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:1:p:101-111
    DOI: 10.1016/j.renene.2009.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109003000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J. K. & Vlachou, D. S. & Korbakis, G., 2005. "Techno-economic evaluation of small hydro power plants in Greece: a complete sensitivity analysis," Energy Policy, Elsevier, vol. 33(15), pages 1969-1985, October.
    2. Ringel, Marc, 2006. "Fostering the use of renewable energies in the European Union: the race between feed-in tariffs and green certificates," Renewable Energy, Elsevier, vol. 31(1), pages 1-17.
    3. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2009. "Feasibility analysis of renewable energy supply options for a grid-connected large hotel," Renewable Energy, Elsevier, vol. 34(4), pages 955-964.
    4. Talavera, D.L. & Nofuentes, G. & Aguilera, J. & Fuentes, M., 2007. "Tables for the estimation of the internal rate of return of photovoltaic grid-connected systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 447-466, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Girard, A. & Gago, E.J. & Ordoñez, J. & Muneer, T., 2016. "Spain's energy outlook: A review of PV potential and energy export," Renewable Energy, Elsevier, vol. 86(C), pages 703-715.
    2. John K. Kaldellis, 2025. "Long-Term Analysis of Hydropower’s Pivotal Role in Sustainable Future of Greece," Energies, MDPI, vol. 18(9), pages 1-27, April.
    3. Bergek, Anna & Jacobsson, Staffan, 2010. "Are tradable green certificates a cost-efficient policy driving technical change or a rent-generating machine? Lessons from Sweden 2003-2008," Energy Policy, Elsevier, vol. 38(3), pages 1255-1271, March.
    4. Fernández-Blanco, R. & Kavvadias, K. & Hidalgo González, I., 2017. "Quantifying the water-power linkage on hydrothermal power systems: A Greek case study," Applied Energy, Elsevier, vol. 203(C), pages 240-253.
    5. Yi, Choong-Sung & Lee, Jin-Hee & Shim, Myung-Pil, 2010. "Site location analysis for small hydropower using geo-spatial information system," Renewable Energy, Elsevier, vol. 35(4), pages 852-861.
    6. García Redondo, Antonio José & Román Collado, Rocío, 2014. "An economic valuation of renewable electricity promoted by feed-in system in Spain," Renewable Energy, Elsevier, vol. 68(C), pages 51-57.
    7. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    8. Katsaprakakis, Dimitris Al. & Christakis, Dimitris G. & Zervos, Arthouros & Papantonis, Dimitris & Voutsinas, Spiros, 2008. "Pumped storage systems introduction in isolated power production systems," Renewable Energy, Elsevier, vol. 33(3), pages 467-490.
    9. Arabatzis, Garyfallos & Myronidis, Dimitris, 2011. "Contribution of SHP Stations to the development of an area and their social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3909-3917.
    10. Sener, Can & Fthenakis, Vasilis, 2014. "Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 854-868.
    11. Marc Ringel, 2018. "Tele-Coupling Energy Efficiency Polices in Europe: Showcasing the German Governance Arrangements," Sustainability, MDPI, vol. 10(6), pages 1-27, May.
    12. Fang, Debin & Zhao, Chaoyang & Kleit, Andrew N., 2019. "The impact of the under enforcement of RPS in China: An evolutionary approach," Energy Policy, Elsevier, vol. 135(C).
    13. Lund, Henrik, 2010. "The implementation of renewable energy systems. Lessons learned from the Danish case," Energy, Elsevier, vol. 35(10), pages 4003-4009.
    14. Aleksandra Matuszewska-Janica & Dorota Żebrowska-Suchodolska & Urszula Ala-Karvia & Marta Hozer-Koćmiel, 2021. "Changes in Electricity Production from Renewable Energy Sources in the European Union Countries in 2005–2019," Energies, MDPI, vol. 14(19), pages 1-27, October.
    15. Velo, R. & Osorio, L. & Fernández, M.D. & Rodríguez, M.R., 2014. "An economic analysis of a stand-alone and grid-connected cattle farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 883-890.
    16. Gustav Resch & Malte Gephart & Simone Steinhilber & Corinna Klessmann & Pablo del Rio & Mario Ragwitz, 2013. "Coordination or Harmonisation? Feasible Pathways for a European Res Strategy beyond 2020," Energy & Environment, , vol. 24(1-2), pages 147-169, February.
    17. Teng, Minmin & Lv, Kunfeng & Han, Chuanfeng & Liu, Pihui, 2025. "A tripartite stochastic evolutionary game for trading strategies under renewable portfolio standards in China’s electric power industry," Renewable Energy, Elsevier, vol. 240(C).
    18. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    19. Sakah, Marriette & Diawuo, Felix Amankwah & Katzenbach, Rolf & Gyamfi, Samuel, 2017. "Towards a sustainable electrification in Ghana: A review of renewable energy deployment policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 544-557.
    20. Kosugi, Takanobu, 2013. "A paradox regarding economic support to deploy renewable energy technologies," Energy Policy, Elsevier, vol. 61(C), pages 1111-1115.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:1:p:101-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.