IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v96y2015icp1-10.html
   My bibliography  Save this article

LCA based comparative study of a microbial oil production starch wastewater treatment plant and its improvements with the combination of CHP system in Shandong, China

Author

Listed:
  • Vera, Luis
  • Sun, Wei
  • Iftikhar, Maria
  • Liu, Junteng

Abstract

A life cycle assessment (LCA) analysis was carried out to evaluate the environmental performance related to a corn starch wastewater treatment plant (WWTP) with simultaneous microbial oil production in Shandong, China, compared against a non-oil producing WWTP. The software GaBi 5.43 was employed for the LCA analysis. Applying an attributional modeling LCA the results showed that the WWTP, despite removing high concentrations of organic matter from the wastewater and being economically feasible by the production of crude bio-oil, has 2330% increased emissions related to energy consumption into the air compared to a non-oil production process. Taking in consideration an estimated activated sludge WWT and anaerobic digester process, the conventional process would have higher GHG emissions. With the LCA results, a consequential modeling LCA taking corn stover biomass as renewable energy source in a direct-fire system was proposed. It showed that corn stover biomass has the potential to mitigate the high emissions to the air due to the abundant available resources near the plant location. Global and regional normalization references were also used to represent the real impact of the LCA results. This study not only revealed an environmental evaluation of the current wastewater microbial oil production technology, but it also helped to identify process bottlenecks and the use of renewable energy opportunities which should receive specific research efforts to make this process environmentally sustainable.

Suggested Citation

  • Vera, Luis & Sun, Wei & Iftikhar, Maria & Liu, Junteng, 2015. "LCA based comparative study of a microbial oil production starch wastewater treatment plant and its improvements with the combination of CHP system in Shandong, China," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 1-10.
  • Handle: RePEc:eee:recore:v:96:y:2015:i:c:p:1-10
    DOI: 10.1016/j.resconrec.2014.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914002031
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Qin & Zhou, Dequn & Fang, Xiaomeng, 2014. "Analysis on the policies of biomass power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 926-935.
    2. Sebastián, F. & Royo, J. & Gómez, M., 2011. "Cofiring versus biomass-fired power plants: GHG (Greenhouse Gases) emissions savings comparison by means of LCA (Life Cycle Assessment) methodology," Energy, Elsevier, vol. 36(4), pages 2029-2037.
    3. Wang, Qiang & Chen, Yong, 2010. "Status and outlook of China's free-carbon electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1014-1025, April.
    4. Zhao, Xingang & Liu, Pingkuo, 2014. "Focus on bioenergy industry development and energy security in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 302-312.
    5. Xingang, Zhao & Zhongfu, Tan & Pingkuo, Liu, 2013. "Development goal of 30GW for China’s biomass power generation: Will it be achieved?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 310-317.
    6. Schneider, T. & Graeff-Hönninger, S. & French, W.T. & Hernandez, R. & Merkt, N. & Claupein, W. & Hetrick, M. & Pham, P., 2013. "Lipid and carotenoid production by oleaginous red yeast Rhodotorula glutinis cultivated on brewery effluents," Energy, Elsevier, vol. 61(C), pages 34-43.
    7. Rehl, T. & Lansche, J. & Müller, J., 2012. "Life cycle assessment of energy generation from biogas—Attributional vs. consequential approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3766-3775.
    8. Zhao, Zhen-yu & Yan, Hong, 2012. "Assessment of the biomass power generation industry in China," Renewable Energy, Elsevier, vol. 37(1), pages 53-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ekwenna, Emeka Boniface & Tabraiz, Shamas & Wang, Yaodong & Roskilly, Anthony, 2023. "Exploring the feasibility of biological hydrogen production using seed sludge pretreated with agro-industrial wastes," Renewable Energy, Elsevier, vol. 215(C).
    2. Toniolo, Sara & Mazzi, Anna & Pieretto, Chiara & Scipioni, Antonio, 2017. "Allocation strategies in comparative life cycle assessment for recycling: Considerations from case studies," Resources, Conservation & Recycling, Elsevier, vol. 117(PB), pages 249-261.
    3. Väntsi, Olli & Kärki, Timo, 2015. "Environmental assessment of recycled mineral wool and polypropylene utilized in wood polymer composites," Resources, Conservation & Recycling, Elsevier, vol. 104(PA), pages 38-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Liwei & Ye, Junhong & Zhao, Yufei & Zhao, Erdong, 2015. "The plight of the biomass power generation industry in China – A supply chain risk perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 680-692.
    2. Lin, Boqiang & He, Jiaxin, 2017. "Is biomass power a good choice for governments in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1218-1230.
    3. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    4. Wen, Wen & Zhang, Qin, 2015. "A design of straw acquisition mode for China's straw power plant based on supply chain coordination," Renewable Energy, Elsevier, vol. 76(C), pages 369-374.
    5. Qingyou Yan & Jie Tao, 2014. "Biomass Power Generation Industry Efficiency Evaluation in China," Sustainability, MDPI, vol. 6(12), pages 1-16, December.
    6. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    7. Liu, Jicheng & Wang, Sijia & Wei, Qiushuang & Yan, Suli, 2014. "Present situation, problems and solutions of China׳s biomass power generation industry," Energy Policy, Elsevier, vol. 70(C), pages 144-151.
    8. Xiaocheng Zhu & Yanru Zhang & Zhenzhong Wang & Xunzhang Pan, 2022. "Comparison of China’s Biomass Combustion Power Generation with Different Installed Capacities," Energies, MDPI, vol. 15(4), pages 1-8, February.
    9. Lin, Boqiang & He, Jiaxin, 2016. "Learning curves for harnessing biomass power: What could explain the reduction of its cost during the expansion of China?," Renewable Energy, Elsevier, vol. 99(C), pages 280-288.
    10. Zhao, Zhen-Yu & Zuo, Jian & Wu, Pan-Hao & Yan, Hong & Zillante, George, 2016. "Competitiveness assessment of the biomass power generation industry in China: A five forces model study," Renewable Energy, Elsevier, vol. 89(C), pages 144-153.
    11. Ren, Jingzheng & Dong, Liang & Sun, Lu & Evan Goodsite, Michael & Dong, Lichun & Luo, Xiao & Sovacool, Benjamin K., 2015. "“Supply push” or “demand pull?”: Strategic recommendations for the responsible development of biofuel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 382-392.
    12. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    13. Shirzad, Mohammad & Kazemi Shariat Panahi, Hamed & Dashti, Behrouz B. & Rajaeifar, Mohammad Ali & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2019. "A comprehensive review on electricity generation and GHG emission reduction potentials through anaerobic digestion of agricultural and livestock/slaughterhouse wastes in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 571-594.
    14. Maung, Thein A. & McCarl, Bruce A., 2013. "Economic factors influencing potential use of cellulosic crop residues for electricity generation," Energy, Elsevier, vol. 56(C), pages 81-91.
    15. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    16. Loeffler, Dan & Anderson, Nathaniel, 2014. "Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA," Applied Energy, Elsevier, vol. 113(C), pages 67-77.
    17. Wang, Qiang & Li, Rongrong, 2017. "Decline in China's coal consumption: An evidence of peak coal or a temporary blip?," Energy Policy, Elsevier, vol. 108(C), pages 696-701.
    18. Binz, Christian & Gosens, Jorrit & Hansen, Teis & Hansen, Ulrich Elmer, 2017. "Toward Technology-Sensitive Catching-Up Policies: Insights from Renewable Energy in China," World Development, Elsevier, vol. 96(C), pages 418-437.
    19. Lindner, Soeren & Liu, Zhu & Guan, Dabo & Geng, Yong & Li, Xin, 2013. "CO2 emissions from China’s power sector at the provincial level: Consumption versus production perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 164-172.
    20. Mohammadrezaei, Rashed & Zareei, Samira & Behroozi- Khazaei, Nasser, 2018. "Optimum mixing rate in biogas reactors: Energy balance calculations and computational fluid dynamics simulation," Energy, Elsevier, vol. 159(C), pages 54-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:96:y:2015:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.