IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i23p9224-d994402.html
   My bibliography  Save this article

Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges

Author

Listed:
  • Long Zhang

    (School of Aerospace Engineering, Tsinghua University, Beijing 100084, China)

  • Shanshan Zhang

    (School of Aerospace Engineering, Tsinghua University, Beijing 100084, China)

  • Hua Zhou

    (Institute for Aero Engine, Tsinghua University, Beijing 100084, China)

  • Zhuyin Ren

    (Institute for Aero Engine, Tsinghua University, Beijing 100084, China)

  • Hongchuan Wang

    (Beijing Shenkebosi Thermal Engineering Technology Co., Ltd., Beijing 100084, China)

  • Xiuxun Wang

    (Zhonglu International Technology Co., Ltd., Beijing 100084, China)

Abstract

It is becoming increasingly important to develop effective combustion technologies for low calorific industrial gases (LCIG) because of the rising energy demand and environmental issues caused by the extensive use of fossil fuels. In this review, the prospect of these opportunity fuels in China is discussed. Then, the recent fundamental and engineering studies of LCIG combustion are summarized. Specifically, the differences between LCIG and traditional fuels in the composition and fundamental combustion characteristics are described. The state-of-the-art combustion strategies for burning LCIG are reviewed, including porous media combustion, flameless combustion, oxy-fuel combustion, and dual-fuel combustion. The technical challenges and further development needs for efficient LCIG combustion are also discussed.

Suggested Citation

  • Long Zhang & Shanshan Zhang & Hua Zhou & Zhuyin Ren & Hongchuan Wang & Xiuxun Wang, 2022. "Efficient Combustion of Low Calorific Industrial Gases: Opportunities and Challenges," Energies, MDPI, vol. 15(23), pages 1-14, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9224-:d:994402
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/23/9224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/23/9224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smith, Joseph D. & Sreedharan, Vikram & Landon, Mark & Smith, Zachary P., 2020. "Advanced design optimization of combustion equipment for biomass combustion," Renewable Energy, Elsevier, vol. 145(C), pages 1597-1607.
    2. Jiang, Xinyuan & Sommer, Sven G. & Christensen, Knud V., 2011. "A review of the biogas industry in China," Energy Policy, Elsevier, vol. 39(10), pages 6073-6081, October.
    3. Al-attab, K.A. & Zainal, Z.A., 2011. "Design and performance of a pressurized cyclone combustor (PCC) for high and low heating value gas combustion," Applied Energy, Elsevier, vol. 88(4), pages 1084-1095, April.
    4. Kim, Donghee & Ahn, Hyungjun & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion," Energy, Elsevier, vol. 219(C).
    5. Gentillon, Philippe & Singh, Siddharth & Lakshman, Suhas & Zhang, Zhaolun & Paduthol, Appu & Ekins-Daukes, N.J. & Chan, Qing N. & Taylor, Robert A., 2019. "A comprehensive experimental characterisation of a novel porous media combustion-based thermophotovoltaic system with controlled emission," Applied Energy, Elsevier, vol. 254(C).
    6. Song, Fuqiang & Wen, Zhi & Dong, Zhiyong & Wang, Enyu & Liu, Xunliang, 2017. "Ultra-low calorific gas combustion in a gradually-varied porous burner with annular heat recirculation," Energy, Elsevier, vol. 119(C), pages 497-503.
    7. Yao, Xiwen & Zhao, Zhicheng & Chen, Shoukun & Zhou, Haodong & Xu, Kaili, 2020. "Migration and transformation behaviours of ash residues from a typical fixed-bed gasification station for biomass syngas production in China," Energy, Elsevier, vol. 201(C).
    8. Liu, Hongzhao & Wang, Yuzhang & Yu, Tao & Liu, Hecong & Cai, Weiwei & Weng, Shilie, 2020. "Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1299-1311.
    9. Jiang, Yan-huan & Li, Guo-xiu & Li, Hong-meng & Zhang, Guo-peng & Lv, Jia-cheng, 2020. "Study on the effect of hydrogen fraction on the premixed combustion characteristics of syngas/air mixtures," Energy, Elsevier, vol. 200(C).
    10. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Xu, Hongpeng & Li, Zhenwei & Tay, Kunlin & Zeng, Guang & Yu, Wenbin, 2020. "Investigation on premixed H2/C3H8/air combustion in porous medium combustor for the micro thermophotovoltaic application," Applied Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Li & Cao, Yunqi & Jia, Zhixuan & Liu, Fang & Song, Zhengchang, 2023. "Properties and mechanisms of low concentration methane catalytic combustion in porous media supported with transition metal oxides," Applied Energy, Elsevier, vol. 350(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, Qingguo & Xie, Bo & Yang, Wenming & Tang, Shihao & Li, Zhenwei & Zhou, Peng & Luo, Ningkang, 2021. "Effects of porosity and multilayers of porous medium on the hydrogen-fueled combustion and micro-thermophotovoltaic," Renewable Energy, Elsevier, vol. 174(C), pages 391-402.
    2. Banerjee, Abhisek & Paul, Diplina, 2021. "Developments and applications of porous medium combustion: A recent review," Energy, Elsevier, vol. 221(C).
    3. E, Jiaqiang & Luo, Bo & Han, Dandan & Chen, Jingwei & Liao, Gaoliang & Zhang, Feng & Ding, Jiangjun, 2022. "A comprehensive review on performance improvement of micro energy mechanical system: Heat transfer, micro combustion and energy conversion," Energy, Elsevier, vol. 239(PE).
    4. Ni, Siliang & Zhao, Dan & Sellier, Mathieu & Li, Junwei & Chen, Xinjian & Li, Xinyan & Cao, Feng & Li, Weixuan, 2021. "Thermal performances and emitter efficiency improvement studies on premixed micro-combustors with different geometric shapes for thermophotovoltaics applications," Energy, Elsevier, vol. 226(C).
    5. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.
    6. De Clercq, Djavan & Wen, Zongguo & Fei, Fan, 2017. "Economic performance evaluation of bio-waste treatment technology at the facility level," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 178-184.
    7. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    8. Fontana, Éliton & Battiston, Lucas & Oliveira, Rosivaldo G.A. & Capeletto, Claudia A. & Luz, Luiz F.L., 2022. "Beyond the combustion chamber: Heat transfer and its impact on micro-thermophotovoltaic systems performance," Energy, Elsevier, vol. 239(PC).
    9. Khalil, Ahmed E.E. & Arghode, Vaibhav K. & Gupta, Ashwani K. & Lee, Sang Chun, 2012. "Low calorific value fuelled distributed combustion with swirl for gas turbine applications," Applied Energy, Elsevier, vol. 98(C), pages 69-78.
    10. Sun, Dingqiang & Bai, Junfei & Qiu, Huanguang & Cai, Yaqing, 2014. "Impact of government subsidies on household biogas use in rural China," Energy Policy, Elsevier, vol. 73(C), pages 748-756.
    11. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    12. Valerii Havrysh & Antonina Kalinichenko & Grzegorz Mentel & Tadeusz Olejarz, 2020. "Commercial Biogas Plants: Lessons for Ukraine," Energies, MDPI, vol. 13(10), pages 1-24, May.
    13. Xie, Bo & Peng, Qingguo & E, Jiaqiang & Tu, Yaojie & Wei, Jia & Tang, Shihao & Song, Yangyang & Fu, Guang, 2022. "Effects of CO addition and multi-factors optimization on hydrogen/air combustion characteristics and thermal performance based on grey relational analysis," Energy, Elsevier, vol. 255(C).
    14. Cheng, Shikun & Li, Zifu & Mang, Heinz-Peter & Neupane, Kalidas & Wauthelet, Marc & Huba, Elisabeth-Maria, 2014. "Application of fault tree approach for technical assessment of small-sized biogas systems in Nepal," Applied Energy, Elsevier, vol. 113(C), pages 1372-1381.
    15. Yin, Dongxue & Liu, Wei & Zhai, Ningning & Wang, Yandong & Ren, Chengjie & Yang, Gaihe, 2017. "Regional differentiation of rural household biogas development and related driving factors in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1008-1018.
    16. Francis Kemausuor & Muyiwa S. Adaramola & John Morken, 2018. "A Review of Commercial Biogas Systems and Lessons for Africa," Energies, MDPI, vol. 11(11), pages 1-21, November.
    17. Xie, Kai & Cui, Yunjing & Qiu, Xingqi & Wang, Jianxin, 2020. "Experimental study on flame characteristics and air entrainment of diesel horizontal spray burners at two different atmospheric pressures," Energy, Elsevier, vol. 211(C).
    18. Li, Fenghai & Zhao, Chaoyue & Fan, Hongli & Xu, Meiling & Guo, Qianqian & Li, Yang & Wu, Lishun & Wang, Tao & Fang, Yitian, 2022. "Ash fusion behaviors of sugarcane bagasse and its modification with sewage sludge addition," Energy, Elsevier, vol. 251(C).
    19. Bao, Chao & Fang, Chuang-lin, 2013. "Geographical and environmental perspectives for the sustainable development of renewable energy in urbanizing China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 464-474.
    20. Abdallah, Muhammed S. & Mansour, Mohy S. & Allam, Nageh K., 2021. "Mapping the stability of free-jet biogas flames under partially premixed combustion," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:23:p:9224-:d:994402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.