IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6679-d913546.html
   My bibliography  Save this article

Influencing of the Building Energy Policies upon the Efficiency of Energy Consumption: The Case of Courthouse Buildings in South Korea

Author

Listed:
  • Acinia Nindartin

    (Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea)

  • Hee-Woon Moon

    (Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea)

  • Sang-Jun Park

    (Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea)

  • Kyung-Tae Lee

    (Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea)

  • Jin-Bin Im

    (Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea)

  • Ju-Hyung Kim

    (Department of Architectural Engineering, Hanyang University, Seoul 04763, Korea)

Abstract

As Korea has declared to realize a net-zero emission by 2050 in the Paris Agreement, the country has begun to implement national energy efficiency policies through the Green Standard for Energy and Environmental Design (G-SEED) certification and revision of building insulation thickness standard. However, some studies have reported the ineffectiveness of G-SEED certification and insulation thickness standard in reducing the energy consumption in certain buildings. Therefore, this study investigated the effectiveness of G-SEED certification and the revision of buildings’ insulation thickness standard, and evaluated the energy consumption of courthouse buildings. In addition, this study investigated the total annual energy consumption (electricity, gas, and heating energy) per gross floor area of courthouse buildings located in the central and southern regions of South Korea. Although many studies about the energy consumption analysis of non-residential buildings have been performed previously, a study evaluating the effectiveness of green certification and building insulation thickness standard on the energy consumption of courthouse buildings was performed for the first time. The results revealed that the revision of building insulation thickness standard and G-SEED certification resulted in an energy consumption efficiency of 34.61 and 31.14%, respectively. These results indicated the effectiveness of G-SEED certification and the revision of the building insulation thickness standard for enhancing energy efficiency in Korean courthouse buildings. However, some negative results were observed in the southern area, indicating that it is essential to increase the effectiveness of the building insulation thickness standard and G-SEED certification implementation.

Suggested Citation

  • Acinia Nindartin & Hee-Woon Moon & Sang-Jun Park & Kyung-Tae Lee & Jin-Bin Im & Ju-Hyung Kim, 2022. "Influencing of the Building Energy Policies upon the Efficiency of Energy Consumption: The Case of Courthouse Buildings in South Korea," Energies, MDPI, vol. 15(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6679-:d:913546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sangtae No & Chungyeon Won, 2020. "Comparative Analysis of Energy Consumption between Green Building Certified and Non-Certified Buildings in Korea," Energies, MDPI, vol. 13(5), pages 1-16, February.
    2. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    3. Kee Han Kim & Sang-Sub Jeon & Amina Irakoze & Ki-young Son, 2020. "A Study of the Green Building Benefits in Apartment Buildings According to Real Estate Prices: Case of Non-Capital Areas in South Korea," Sustainability, MDPI, vol. 12(6), pages 1-10, March.
    4. Sheng-Yuan Wang & Kyung-Tae Lee & Ju-Hyung Kim, 2022. "Green Retrofitting Simulation for Sustainable Commercial Buildings in China Using a Proposed Multi-Agent Evolutionary Game," Sustainability, MDPI, vol. 14(13), pages 1-32, June.
    5. Muhammad Azim Mohd Shukri & Junaidah Jailani & Ali Hauashdh, 2022. "Benchmarking the Energy Efficiency of Higher Educational Buildings: A Case Study Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 491-496, March.
    6. Geller, Howard & Harrington, Philip & Rosenfeld, Arthur H. & Tanishima, Satoshi & Unander, Fridtjof, 2006. "Polices for increasing energy efficiency: Thirty years of experience in OECD countries," Energy Policy, Elsevier, vol. 34(5), pages 556-573, March.
    7. Ali Amiri & Juudit Ottelin & Jaana Sorvari, 2019. "Are LEED-Certified Buildings Energy-Efficient in Practice?," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    8. Katsoulakos, Nikolas M. & Kaliampakos, Dimitris C., 2014. "What is the impact of altitude on energy demand? A step towards developing specialized energy policy for mountainous areas," Energy Policy, Elsevier, vol. 71(C), pages 130-138.
    9. Mingcai Li & Jun Shi & Jun Guo & Jingfu Cao & Jide Niu & Mingming Xiong, 2015. "Climate Impacts on Extreme Energy Consumption of Different Types of Buildings," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    10. Hyojin Lim & Sungho Tae & Seungjun Roh, 2018. "Analysis of the Primary Building Materials in Support of G-SEED Life Cycle Assessment in South Korea," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    11. Kim, Hakpyeong & Hong, Taehoon, 2020. "Determining the optimal set-point temperature considering both labor productivity and energy saving in an office building," Applied Energy, Elsevier, vol. 276(C).
    12. Hyemi Kim & Wonjun Park, 2018. "A Study of the Energy Efficiency Management in Green Standard for Energy and Environmental Design (G-SEED)-Certified Apartments in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdrahman Alsabry & Krzysztof Szymański & Bartosz Michalak, 2023. "Energy, Economic and Environmental Analysis of Alternative, High-Efficiency Sources of Heat and Energy for Multi-Family Residential Buildings in Order to Increase Energy Efficiency in Poland," Energies, MDPI, vol. 16(6), pages 1-20, March.
    2. Mokhtar Aly & Emad A. Mohamed & Hegazy Rezk & Ahmed M. Nassef & Mostafa A. Elhosseini & Ahmed Shawky, 2023. "An Improved Optimally Designed Fuzzy Logic-Based MPPT Method for Maximizing Energy Extraction of PEMFC in Green Buildings," Energies, MDPI, vol. 16(3), pages 1-23, January.
    3. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rakhyun Kim & Myung-Kwan Lim & Seungjun Roh & Won-Jun Park, 2021. "Analysis of the Characteristics of Environmental Impacts According to the Cut-Off Criteria Applicable to the Streamlined Life Cycle Assessment (S-LCA) of Apartment Buildings in South Korea," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    2. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    3. Sangtae No & Chungyeon Won, 2020. "Comparative Analysis of Energy Consumption between Green Building Certified and Non-Certified Buildings in Korea," Energies, MDPI, vol. 13(5), pages 1-16, February.
    4. Zaim, Osman & Uygurtürk Gazel, Tuğçe & Akkemik, K. Ali, 2017. "Measuring energy intensity in Japan: A new method," European Journal of Operational Research, Elsevier, vol. 258(2), pages 778-789.
    5. Danielle De Castro & Amy Kim, 2021. "Adaptive or Absent: A Critical Review of Building System Resilience in the LEED Rating System," Sustainability, MDPI, vol. 13(12), pages 1-10, June.
    6. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    7. Yu Cao & Cong Xu & Syahrul Nizam Kamaruzzaman & Nur Mardhiyah Aziz, 2022. "A Systematic Review of Green Building Development in China: Advantages, Challenges and Future Directions," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    8. Sam Hampton & Richard Blundel & Aqueel Wahga & Tina Fawcett & Christopher Shaw, 2022. "Transforming small and medium‐sized enterprises to address the climate emergency: The case for values‐based engagement," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 29(5), pages 1424-1439, September.
    9. Besagni, Giorgio & Premoli Vilà, Lidia & Borgarello, Marco & Trabucchi, Andrea & Merlo, Marco & Rodeschini, Jacopo & Finazzi, Francesco, 2021. "Electrification pathways of the Italian residential sector under socio-demographic constrains: Looking towards 2040," Energy, Elsevier, vol. 217(C).
    10. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    11. Stigson, Peter & Dotzauer, Erik & Yan, Jinyue, 2009. "Improving policy making through government-industry policy learning: The case of a novel Swedish policy framework," Applied Energy, Elsevier, vol. 86(4), pages 399-406, April.
    12. Jun Li & Michel Colombier, 2011. "Economic instruments for mitigating carbon emissions: scaling up carbon finance in China’s buildings sector," Climatic Change, Springer, vol. 107(3), pages 567-591, August.
    13. Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
    14. Jungwon Yoon & Sanghyun Bae, 2020. "Performance Evaluation and Design of Thermo-Responsive SMP Shading Prototypes," Sustainability, MDPI, vol. 12(11), pages 1-35, May.
    15. Filippín, Celina & Ricard, Florencia & Flores Larsen, Silvana & Santamouris, Mattheos, 2017. "Retrospective analysis of the energy consumption of single-family dwellings in central Argentina. Retrofitting and adaptation to the climate change," Renewable Energy, Elsevier, vol. 101(C), pages 1226-1241.
    16. Mabroor Hassan & Manzoor K Afridi & Muhammad I Khan, 2018. "An overview of alternative and renewable energy governance, barriers, and opportunities in Pakistan," Energy & Environment, , vol. 29(2), pages 184-203, March.
    17. Halawa, E. & Chang, K.C. & Yoshinaga, M., 2015. "Thermal performance evaluation of solar water heating systems in Australia, Taiwan and Japan – A comparative review," Renewable Energy, Elsevier, vol. 83(C), pages 1279-1286.
    18. Du, Minzhe & Wang, Bing & Zhang, Ning, 2018. "National research funding and energy efficiency: Evidence from the National Science Foundation of China," Energy Policy, Elsevier, vol. 120(C), pages 335-346.
    19. Wilson, Elizabeth J. & Plummer, Joseph & Fischlein, Miriam & Smith, Timothy M., 2008. "Implementing energy efficiency: Challenges and opportunities for rural electric co-operatives and small municipal utilities," Energy Policy, Elsevier, vol. 36(9), pages 3383-3397, September.
    20. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6679-:d:913546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.