IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p5883-d887572.html
   My bibliography  Save this article

Gasification of Spruce Wood Chips in a 1.5 MW th Fluidised Bed Reactor

Author

Listed:
  • Fabio Montagnaro

    (Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, 80126 Napoli, Italy)

  • Lucio Zaccariello

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, via Vivaldi 43, 81100 Caserta, Italy)

Abstract

Production of syngas from the gasification of a biomass is attracting attention with an eye to the concepts of circularity, sustainability, and recent needs, triggered by socio-political events, to increase the level of self-sufficiency of energy sources for a given community. This manuscript reports on the gasification of spruce wood chips in a demonstration fluidised bed gasifier (1.5 MW th , height of 5.40 m, internal diameter of 1.2 m), with 0.2–0.4 mm olivine inventory (1000 kg). Gasification was carried out in air, at four different values of equivalence ratio (from 27% to 36%). The bed was fluidised at about 0.6 m/s, and the bed temperature resulted in the range of about 960–1030 °C as a function of the different tests. A mass flow rate of biomass in the range of about 360–480 kg/h (as a function of the different tests) was fed to the fluidised bed gasifier. Syngas lower heating value, specific mass and energetic yield, and chemical composition, were reported along with data on the production of elutriated fines. Moreover, tar compounds were collected, quantified and chemically speciated. The effect of the equivalence ratio on the main process parameter was critically discussed, proposing useful analytical relationships for the prediction of syngas lower heating value, tar mass flow rate and chemical composition.

Suggested Citation

  • Fabio Montagnaro & Lucio Zaccariello, 2022. "Gasification of Spruce Wood Chips in a 1.5 MW th Fluidised Bed Reactor," Energies, MDPI, vol. 15(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5883-:d:887572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/5883/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/5883/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nadia Cerone & Francesco Zimbardi, 2021. "Effects of Oxygen and Steam Equivalence Ratios on Updraft Gasification of Biomass," Energies, MDPI, vol. 14(9), pages 1-18, May.
    2. Lucio Zaccariello & Maria Laura Mastellone, 2015. "Fluidized-Bed Gasification of Plastic Waste, Wood, and Their Blends with Coal," Energies, MDPI, vol. 8(8), pages 1-17, August.
    3. Bandara, Janitha C. & Jaiswal, Rajan & Nielsen, Henrik K. & Moldestad, Britt M.E. & Eikeland, Marianne S., 2021. "Air gasification of wood chips, wood pellets and grass pellets in a bubbling fluidized bed reactor," Energy, Elsevier, vol. 233(C).
    4. Jiu Huang & Klaus Gerhard Schmidt & Zhengfu Bian, 2011. "Removal and Conversion of Tar in Syngas from Woody Biomass Gasification for Power Utilization Using Catalytic Hydrocracking," Energies, MDPI, vol. 4(8), pages 1-15, August.
    5. Saxena, R.C. & Seal, Diptendu & Kumar, Satinder & Goyal, H.B., 2008. "Thermo-chemical routes for hydrogen rich gas from biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1909-1927, September.
    6. Korus, Agnieszka & Ravenni, Giulia & Loska, Krzysztof & Korus, Irena & Samson, Abby & Szlęk, Andrzej, 2021. "The importance of inherent inorganics and the surface area of wood char for its gasification reactivity and catalytic activity towards toluene conversion," Renewable Energy, Elsevier, vol. 173(C), pages 479-497.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Montagnaro, Fabio & Zaccariello, Lucio, 2023. "Performance assessment of a demonstration-scale biomass gasification power plant using material and energy flow analyses," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xia Liu & Juntao Wei & Wei Huo & Guangsuo Yu, 2017. "Gasification under CO 2 –Steam Mixture: Kinetic Model Study Based on Shared Active Sites," Energies, MDPI, vol. 10(11), pages 1-10, November.
    2. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Mauro Prestipino & Antonio Piccolo & Maria Francesca Polito & Antonio Galvagno, 2022. "Combined Bio-Hydrogen, Heat, and Power Production Based on Residual Biomass Gasification: Energy, Exergy, and Renewability Assessment of an Alternative Process Configuration," Energies, MDPI, vol. 15(15), pages 1-17, July.
    4. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    5. M. Faizal & L. S. Chuah & C. Lee & A. Hameed & J. Lee & M. Shankar, 2019. "Review Of Hydrogen Fuel For Internal Combustion Engines," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(3), pages 35-46, April.
    6. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    7. María Pilar González-Vázquez & Roberto García & Covadonga Pevida & Fernando Rubiera, 2017. "Optimization of a Bubbling Fluidized Bed Plant for Low-Temperature Gasification of Biomass," Energies, MDPI, vol. 10(3), pages 1-16, March.
    8. Carlos Vargas-Salgado & Elías Hurtado-Pérez & David Alfonso-Solar & Anders Malmquist, 2021. "Empirical Design, Construction, and Experimental Test of a Small-Scale Bubbling Fluidized Bed Reactor," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    9. Liu, Haolin & Ye, Chao & Xu, Yousheng & Wang, Qisong, 2022. "Effect of activation conditions and iron loading content on the catalytic cracking of toluene by biochar," Energy, Elsevier, vol. 247(C).
    10. AlNouss, Ahmed & Parthasarathy, Prakash & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish & McKay, Gordon, 2020. "Techno-economic and sensitivity analysis of coconut coir pith-biomass gasification using ASPEN PLUS," Applied Energy, Elsevier, vol. 261(C).
    11. Fugang Zhu & Laihong Shen & Pengcheng Xu & Haoran Yuan & Ming Hu & Jingwei Qi & Yong Chen, 2022. "Numerical Simulation of an Improved Updraft Biomass Gasifier Based on Aspen Plus," IJERPH, MDPI, vol. 19(24), pages 1-11, December.
    12. Panwar, N.L. & Kothari, Richa & Tyagi, V.V., 2012. "Thermo chemical conversion of biomass – Eco friendly energy routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1801-1816.
    13. Su, Hongcai & Yan, Mi & Wang, Shurong, 2022. "Recent advances in supercritical water gasification of biowaste catalyzed by transition metal-based catalysts for hydrogen production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Dries Haeseldonckx & William D’haeseleer, 2010. "Hydrogen from Renewables," Chapters, in: François Lévêque & Jean-Michel Glachant & Julián Barquín & Christian von Hirschhausen & Franziska Ho (ed.), Security of Energy Supply in Europe, chapter 10, Edward Elgar Publishing.
    15. Udomsirichakorn, Jakkapong & Salam, P. Abdul, 2014. "Review of hydrogen-enriched gas production from steam gasification of biomass: The prospect of CaO-based chemical looping gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 565-579.
    16. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    17. Rupesh S & Muraleedharan C & Arun P, 2022. "Influence of Residence Time on Syngas Composition in CaO Enhanced Air–Steam Gasification of Biomass," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8363-8377, June.
    18. Machin, Einara Blanco & Pedroso, Daniel Travieso & Proenza, Nestor & Silveira, José Luz & Conti, Leonetto & Braga, Lúcia Bollini & Machin, Adrian Blanco, 2015. "Tar reduction in downdraft biomass gasifier using a primary method," Renewable Energy, Elsevier, vol. 78(C), pages 478-483.
    19. Cai, Lei & He, Tianzhi & Xiang, Yanlei & Guan, Yanwen, 2020. "Study on the reaction pathways of steam methane reforming for H2 production," Energy, Elsevier, vol. 207(C).
    20. Rukshan Jayathilake & Souman Rudra, 2017. "Numerical and Experimental Investigation of Equivalence Ratio (ER) and Feedstock Particle Size on Birchwood Gasification," Energies, MDPI, vol. 10(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:5883-:d:887572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.