IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5379-d871148.html
   My bibliography  Save this article

Techno-Economic Feasibility of a Solar-Wind-Fuel Cell Energy System in Duqm, Oman

Author

Listed:
  • Abdullah Al-Badi

    (Department of Electrical & Computer Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al Khoudh, Muscat 123, Oman)

  • Abdulmajeed Al Wahaibi

    (Department of Electrical & Computer Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al Khoudh, Muscat 123, Oman)

  • Razzaqul Ahshan

    (Department of Electrical & Computer Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al Khoudh, Muscat 123, Oman)

  • Arif Malik

    (Department of Electrical & Computer Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al Khoudh, Muscat 123, Oman)

Abstract

Duqm is located in the Al Wasta Governorate in Oman and is currently fed by 10 diesel generators with a total capacity of around 76 MW and other rental power sources with a size of 18 MW. To make the electric power supply come completely from renewables, one novel solution is to replace the diesel with hydrogen. The extra energy coming from the PV-wind system can be utilized to produce green hydrogen that will be utilized by the fuel cell. Measured data of solar insolation, hourly wind speeds, and hourly load consumption are used in the proposed system. Finding an ideal configuration that can match the load demand and be suitable from an economic and environmental point of view was the main objective of this research. The Hybrid Optimization Model for Multiple Energy Resources (HOMER Pro) microgrid software was used to evaluate the technical and financial performance. The findings demonstrated that the suggested hybrid system (PV-wind-fuel cell) will remove CO 2 emissions at a cost of energy (COE) of USD 0.436/kWh and will reduce noise. With a total CO 2 emission of 205,676,830 kg/year, the levelized cost of energy for the current system is USD 0.196/kWh. The levelized cost for the diesel system will rise to USD 0.243/kWh when taking 100 US dollars per ton of CO 2 into account. Due to system advantages, the results showed that using solar, wind, and fuel cells is the most practical and cost-effective technique. The results of this research illustrated the feasibility and effectiveness of utilizing wind and solar resources for both hydrogen and energy production and also suggested that hydrogen is a more cost-effective long-term energy storage option than batteries.

Suggested Citation

  • Abdullah Al-Badi & Abdulmajeed Al Wahaibi & Razzaqul Ahshan & Arif Malik, 2022. "Techno-Economic Feasibility of a Solar-Wind-Fuel Cell Energy System in Duqm, Oman," Energies, MDPI, vol. 15(15), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5379-:d:871148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5379/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5379/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sen, Suphi & Vollebergh, Herman, 2018. "The effectiveness of taxing the carbon content of energy consumption," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 74-99.
    2. Hemamala I. Karunadasa & Christopher J. Chang & Jeffrey R. Long, 2010. "A molecular molybdenum-oxo catalyst for generating hydrogen from water," Nature, Nature, vol. 464(7293), pages 1329-1333, April.
    3. Florens Flues & Kurt van Dender, 2020. "Carbon pricing design: Effectiveness, efficiency and feasibility: An investment perspective," OECD Taxation Working Papers 48, OECD Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Belqasem Aljafari & Priya Ranjan Satpathy & Siva Rama Krishna Madeti & Pradeep Vishnuram & Sudhakar Babu Thanikanti, 2022. "Reliability Enhancement of Photovoltaic Systems under Partial Shading through a Two-Step Module Placement Approach," Energies, MDPI, vol. 15(20), pages 1-27, October.
    2. Tareq Salameh & Abdul Ghani Olabi & Mohammad Ali Abdelkareem & Mohd Shahbudin Masdar & Siti Kartom Kamarudin & Enas Taha Sayed, 2023. "Integrated Energy System Powered a Building in Sharjah Emirates in the United Arab Emirates," Energies, MDPI, vol. 16(2), pages 1-20, January.
    3. Ana Tereza Andrade Borba & Leonardo Jaime Machado Simões & Thamiles Rodrigues de Melo & Alex Álisson Bandeira Santos, 2024. "Techno-Economic Assessment of a Hybrid Renewable Energy System for a County in the State of Bahia," Energies, MDPI, vol. 17(3), pages 1-18, January.
    4. Gbalimene Richard Ileberi & Pu Li, 2023. "Integrating Hydrokinetic Energy into Hybrid Renewable Energy System: Optimal Design and Comparative Analysis," Energies, MDPI, vol. 16(8), pages 1-28, April.
    5. Abdullah Al Abri & Abdullah Al Kaaf & Musaab Allouyahi & Ali Al Wahaibi & Razzaqul Ahshan & Rashid S. Al Abri & Ahmed Al Abri, 2022. "Techno-Economic and Environmental Analysis of Renewable Mix Hybrid Energy System for Sustainable Electrification of Al-Dhafrat Rural Area in Oman," Energies, MDPI, vol. 16(1), pages 1-23, December.
    6. Onur Turan & Ali Durusu & Recep Yumurtaci, 2023. "Driving Urban Energy Sustainability: A Techno-Economic Perspective on Nanogrid Solutions," Energies, MDPI, vol. 16(24), pages 1-30, December.
    7. Joseph Akpan & Oludolapo Olanrewaju, 2023. "Sustainable Energy Development: History and Recent Advances," Energies, MDPI, vol. 16(20), pages 1-44, October.
    8. Md. Arif Hossain & Ashik Ahmed & Shafiqur Rahman Tito & Razzaqul Ahshan & Taiyeb Hasan Sakib & Sarvar Hussain Nengroo, 2022. "Multi-Objective Hybrid Optimization for Optimal Sizing of a Hybrid Renewable Power System for Home Applications," Energies, MDPI, vol. 16(1), pages 1-19, December.
    9. Yahya Z. Alharthi, 2023. "Performance Analysis Using Multi-Year Parameters for a Grid-Connected Wind Power System," Energies, MDPI, vol. 16(5), pages 1-20, February.
    10. Tamal Chowdhury & Samiul Hasan & Hemal Chowdhury & Abul Hasnat & Ahmad Rashedi & M. R. M. Asyraf & Mohamad Zaki Hassan & Sadiq M. Sait, 2022. "Sizing of an Island Standalone Hybrid System Considering Economic and Environmental Parameters: A Case Study," Energies, MDPI, vol. 15(16), pages 1-22, August.
    11. Francesco Calise, 2022. "Recent Advances in Green Hydrogen Technology," Energies, MDPI, vol. 15(16), pages 1-4, August.
    12. Abdulaziz Alanazi & Mohana Alanazi, 2023. "Multicriteria Decision-Making for Evaluating Solar Energy Source of Saudi Arabia," Sustainability, MDPI, vol. 15(13), pages 1-37, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Kapfhammer, 2023. "The Economic Consequences of Effective Carbon Taxes," Working Papers No 01/2023, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    2. Johan Lilliestam & Anthony Patt & Germán Bersalli, 2022. "On the quality of emission reductions: observed effects of carbon pricing on investments, innovation, and operational shifts. A response to van den Bergh and Savin (2021)," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(3), pages 733-758, November.
    3. Nikolaos Margaritis & Christos Evaggelou & Panagiotis Grammelis & Roberto Arévalo & Haris Yiannoulakis & Polykarpos Papageorgiou, 2023. "Application of Flexible Tools in Magnesia Sector: The Case of Grecian Magnesite," Sustainability, MDPI, vol. 15(16), pages 1-30, August.
    4. Emanuel Kohlscheen & Richhild Moessner & Elod Takáts, 2021. "Effects of Carbon Pricing and Other Climate Policies on CO2 Emissions," CESifo Working Paper Series 9347, CESifo.
    5. Bergholt, Drago & Røisland, Øistein & Sveen, Tommy & Torvik, Ragnar, 2023. "Monetary policy when export revenues drop," Journal of International Money and Finance, Elsevier, vol. 137(C).
    6. Song, Hongqing & Lao, Junming & Zhang, Liyuan & Xie, Chiyu & Wang, Yuhe, 2023. "Underground hydrogen storage in reservoirs: pore-scale mechanisms and optimization of storage capacity and efficiency," Applied Energy, Elsevier, vol. 337(C).
    7. Tan, Xiujie & Wang, Banban & Wei, Jie & Taghizadeh-Hesary, Farhad, 2023. "The role of carbon pricing in achieving energy transition in the Post-COP26 era: Evidence from China's industrial energy conservation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Zhang, Yijun & Song, Yi, 2022. "Tax rebates, technological innovation and sustainable development: Evidence from Chinese micro-level data," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    9. Liu, Na & Yao, Xilong & Wan, Fang & Han, Yunfei, 2023. "Are tax revenue recycling schemes based on industry-differentiated carbon tax conducive to realizing the “double dividend”?," Energy Economics, Elsevier, vol. 124(C).
    10. Kasper Vrolijk & Misato Sato, 2023. "Quasi-Experimental Evidence on Carbon Pricing," The World Bank Research Observer, World Bank, vol. 38(2), pages 213-248.
    11. Emodi, Nnaemeka Vincent & Chaiechi, Taha & Alam Beg, A.B.M. Rabiul, 2019. "A techno-economic and environmental assessment of long-term energy policies and climate variability impact on the energy system," Energy Policy, Elsevier, vol. 128(C), pages 329-346.
    12. Dertinger, Andrea & Hirth, Lion, 2019. "Reforming the Electric Power Industry in Developing Economies," EconStor Preprints 201842, ZBW - Leibniz Information Centre for Economics.
    13. Marz, Waldemar & Pfeiffer, Johannes, 2020. "Petrodollar recycling, oil monopoly, and carbon taxes," Journal of Environmental Economics and Management, Elsevier, vol. 100(C).
    14. Aydin, Mucahit & Sogut, Yasin & Altundemir, Mehmet Emin, 2023. "Moving toward the sustainable environment of European Union countries: Investigating the effect of natural resources and green budgeting on environmental quality," Resources Policy, Elsevier, vol. 83(C).
    15. Svetlana I. Chuzhmarova & Andrei I. Chuzhmarov, 2023. "Tax Incentives for Investments in Green Technologies: Experience of Selected Countries," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 2, pages 74-89, April.
    16. Richard S. J. Tol, 2023. "Costs And Benefits Of The Paris Climate Targets," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 1-18, November.
    17. Lassi Ahlvik & Jørgen Juel Andersen & Jonas Hveding Hamang & Torfinn Harding, 2022. "Quantifying supply-side climate policies," Working Papers No 01/2022, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    18. Richhild Moessner, 2024. "Effects of Green Technology Support Policies on Carbon Dioxide Emissions," CESifo Working Paper Series 11047, CESifo.
    19. Vrolijk, Kasper & Sato, Misato, 2023. "Quasi-experimental evidence on carbon pricing," LSE Research Online Documents on Economics 118404, London School of Economics and Political Science, LSE Library.
    20. Teresa Famulska & Jan Kaczmarzyk & Małgorzata Grząba-Włoszek, 2022. "Environmental Taxes in the Member States of the European Union—Trends in Energy Taxes," Energies, MDPI, vol. 15(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5379-:d:871148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.