IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4813-d853336.html
   My bibliography  Save this article

Energy Consumption Depending on the Durability of Pellets Formed from Sawdust with an Admixture of FFP2 Masks

Author

Listed:
  • Nikola Čajová Kantová

    (Research Centre, University of Žilina, Univerzitna 1, 010 26 Žilina, Slovakia)

  • Pavol Belány

    (Research Centre, University of Žilina, Univerzitna 1, 010 26 Žilina, Slovakia)

  • Michal Holubčík

    (Department of Power Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitna 1, 010 26 Žilina, Slovakia)

  • Alexander Čaja

    (Department of Power Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitna 1, 010 26 Žilina, Slovakia)

Abstract

At present, we are still feeling the effects of the COVID-19 pandemic in connection with the huge amount of waste generated. However, the reuse of the produced waste in other processes requires energy consumption. This article deals with the reuse of face masks FFP2, which were added as an admixture to spruce or beech sawdust and then processed into pellets. During the production process of the pellets, energy consumption was measured and further converted to one ton of pellets, and also the consumption was reflected in the price of electricity. After storage, the mechanical durability and dimensions of the individual pellets were measured, and their density was calculated. Based on the results, it can be concluded that spruce pellets with 10% face masks FFP2 (consumption 747.41 kWh; durability 97.53%) and beech pellets with 5% face masks FFP2 (consumption 721.27 kWh; durability 97.38%) achieved higher values of mechanical durability and also consumed more energy than the remaining samples with lower values of durability without considering the sample with spruce sawdust and 5% FFP2 face masks (consumption 872.63 kWh; durability 91.68%). The production of spruce pellets with 5% FFP2 face masks was affected mainly by cold outside weather.

Suggested Citation

  • Nikola Čajová Kantová & Pavol Belány & Michal Holubčík & Alexander Čaja, 2022. "Energy Consumption Depending on the Durability of Pellets Formed from Sawdust with an Admixture of FFP2 Masks," Energies, MDPI, vol. 15(13), pages 1-9, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4813-:d:853336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    2. Marcela Taušová & Eva Mihaliková & Katarína Čulková & Beáta Stehlíková & Peter Tauš & Dušan Kudelas & Ľubomír Štrba & Lucia Domaracká, 2020. "Analysis of Municipal Waste Development and Management in Self-Governing Regions of Slovakia," Sustainability, MDPI, vol. 12(14), pages 1-18, July.
    3. Hamid Rezaei & Fahimeh Yazdan Panah & C. Jim Lim & Shahab Sokhansanj, 2020. "Pelletization of Refuse-Derived Fuel with Varying Compositions of Plastic, Paper, Organic and Wood," Sustainability, MDPI, vol. 12(11), pages 1-11, June.
    4. Andrzej Kuranc & Monika Stoma & Leszek Rydzak & Monika Pilipiuk, 2020. "Durability Assessment of Wooden Pellets in Relation with Vibrations Occurring in a Logistic Process of the Final Product," Energies, MDPI, vol. 13(22), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Alberto Soria-González & Raúl Tauro & José Juan Alvarado-Flores & Víctor Manuel Berrueta-Soriano & José Guadalupe Rutiaga-Quiñones, 2022. "Avocado Tree Pruning Pellets ( Persea americana Mill.) for Energy Purposes: Characterization and Quality Evaluation," Energies, MDPI, vol. 15(20), pages 1-18, October.
    2. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Ras Izzati Ismail & Chu Yee Khor & Alina Rahayu Mohamed, 2023. "Pelletization Temperature and Pressure Effects on the Mechanical Properties of Khaya senegalensis Biomass Energy Pellets," Sustainability, MDPI, vol. 15(9), pages 1-12, May.
    4. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    5. Shuren Chen & Yunfei Zhao & Zhong Tang & Hantao Ding & Zhan Su & Zhao Ding, 2022. "Structural Model of Straw Briquetting Machine with Vertical Ring Die and Optimization of Briquetting Performance," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    6. Marcela Bindzarova Gergelova & Slavomir Labant & Jozef Mizak & Pavel Sustek & Lubomir Leicher, 2021. "Inventory of Locations of Old Mining Works Using LiDAR Data: A Case Study in Slovakia," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    7. Andrzej Bochniak & Monika Stoma, 2021. "Estimating the Optimal Location for the Storage of Pellet Surplus," Energies, MDPI, vol. 14(20), pages 1-16, October.
    8. Sergio Paniagua & Alba Prado-Guerra & Ana Isabel Neto & Teresa Nunes & Luís Tarelho & Célia Alves & Luis Fernando Calvo, 2020. "Influence of Varieties and Organic Fertilizer in the Elaboration of a New Poplar-Straw Pellet and Its Emissions in a Domestic Boiler," Energies, MDPI, vol. 13(23), pages 1-17, November.
    9. Paulina Zdanowska & Iwona Florczak & Jacek Słoma & Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć, 2019. "An Evaluation of the Quality and Microstructure of Biodegradable Composites as Contribution towards Better Management of Food Industry Wastes," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    10. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    11. Grzegorz Maj & Paweł Krzaczek & Wojciech Gołębiowski & Tomasz Słowik & Joanna Szyszlak-Bargłowicz & Grzegorz Zając, 2022. "Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process," Sustainability, MDPI, vol. 14(13), pages 1-15, July.
    12. Lyes Bennamoun & Merlin Simo-Tagne & Macmanus Chinenye Ndukwu, 2020. "Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties," Energies, MDPI, vol. 13(10), pages 1-14, May.
    13. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).
    14. Grzegorz Łysiak & Ryszard Kulig & Alina Kowalczyk-Juśko, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 2—Effect of Loading Level on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(9), pages 1-18, April.
    15. Santa Margarida Santos & Catarina Nobre & Paulo Brito & Margarida Gonçalves, 2023. "Brief Overview of Refuse-Derived Fuel Production and Energetic Valorization: Applied Technology and Main Challenges," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    16. Anwar Ameen Hezam Saeed & Noorfidza Yub Harun & Muhammad Roil Bilad & Muhammad T. Afzal & Ashak Mahmud Parvez & Farah Amelia Shahirah Roslan & Syahirah Abdul Rahim & Vimmal Desiga Vinayagam & Haruna K, 2021. "Moisture Content Impact on Properties of Briquette Produced from Rice Husk Waste," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    17. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. San Miguel, G. & Sánchez, F. & Pérez, A. & Velasco, L., 2022. "One-step torrefaction and densification of woody and herbaceous biomass feedstocks," Renewable Energy, Elsevier, vol. 195(C), pages 825-840.
    19. Paolino Caputo & Pietro Calandra & Valeria Loise & Adolfo Le Pera & Ana-Maria Putz & Abraham A. Abe & Luigi Madeo & Bagdat Teltayev & Maria Laura Luprano & Michela Alfè & Valentina Gargiulo & Giovanna, 2022. "When Physical Chemistry Meets Circular Economy to Solve Environmental Issues: How the ReScA Project Aims at Using Waste Pyrolysis Products to Improve and Rejuvenate Bitumens," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
    20. Yılmaz, Hasan & Çanakcı, Murad & Topakcı, Mehmet & Karayel, Davut & Yiğit, Mete & Ortaçeşme, Derya, 2023. "In-situ pelletization of campus biomass residues: Case study for Akdeniz University," Renewable Energy, Elsevier, vol. 212(C), pages 972-983.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4813-:d:853336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.