IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2709-d550945.html
   My bibliography  Save this article

Energy Consumption in a Distributional Warehouse: A Practical Case Study for Different Warehouse Technologies

Author

Listed:
  • Konrad Lewczuk

    (Faculty of Transport, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland)

  • Michał Kłodawski

    (Faculty of Transport, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland)

  • Paweł Gepner

    (Faculty of Production Engineering, Warsaw University of Technology, Narbutta 85, 02-524 Warsaw, Poland)

Abstract

Energy consumption by distribution warehouses has become an essential component of green warehousing and research on reducing the carbon footprint of supply chains. Energy consumption in warehousing is a complex and multilayered problem, which is generally considered in the literature in relation to its detailed components, not as part of comparative studies. In this article, the authors consider six cross-sectional variants of warehouse technology, from manual to fully automatic, and analyze the energy consumption of a warehouse in various configurations. A methodology for estimating storage space and determining energy consumption is proposed. The energy balance of the warehouse variants includes energy for material handling equipment operation, energy consumption for building maintenance (heating, cooling, lighting, etc.), and energy generated by the photovoltaic system on the roof. Then, the operational costs of the variants are estimated and, on their basis, an automation index is determined. The index allows for a comparative analysis of energy consumption and the mechanization and automation of a warehouse. It is shown that a significant part of the energy is spent on maintaining a warehouse building, especially in the case of facilities with a low degree of automation.

Suggested Citation

  • Konrad Lewczuk & Michał Kłodawski & Paweł Gepner, 2021. "Energy Consumption in a Distributional Warehouse: A Practical Case Study for Different Warehouse Technologies," Energies, MDPI, vol. 14(9), pages 1-25, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2709-:d:550945
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2709/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2709/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beatrice Marchi & Simone Zanoni & Mohamad Y. Jaber, 2020. "Energy Implications of Lot Sizing Decisions in Refrigerated Warehouses," Energies, MDPI, vol. 13(7), pages 1-13, April.
    2. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    3. Bonney, Maurice & Jaber, Mohamad Y., 2011. "Environmentally responsible inventory models: Non-classical models for a non-classical era," International Journal of Production Economics, Elsevier, vol. 133(1), pages 43-53, September.
    4. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    5. Lebunu Hewage Udara Willhelm Abeydeera & Jayantha Wadu Mesthrige & Tharushi Imalka Samarasinghalage, 2019. "Global Research on Carbon Emissions: A Scientometric Review," Sustainability, MDPI, vol. 11(14), pages 1-25, July.
    6. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    7. Makris, P.A. & Makri, A.P. & Provatidis, C.G., 2006. "Energy-saving methodology for material handling applications," Applied Energy, Elsevier, vol. 83(10), pages 1116-1124, October.
    8. Rai, Deepak & Sodagar, Behzad & Fieldson, Rosi & Hu, Xiao, 2011. "Assessment of CO2 emissions reduction in a distribution warehouse," Energy, Elsevier, vol. 36(4), pages 2271-2277.
    9. César Porras-Amores & Fernando R. Mazarrón & Ignacio Cañas, 2014. "Study of the Vertical Distribution of Air Temperature in Warehouses," Energies, MDPI, vol. 7(3), pages 1-14, February.
    10. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    11. Johnsson, Filip & Karlsson, Ida & Rootzén, Johan & Ahlbäck, Anders & Gustavsson, Mathias, 2020. "The framing of a sustainable development goals assessment in decarbonizing the construction industry – Avoiding “Greenwashing”," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Bartolini, M. & Bottani, E. & Grosse, E. H., 2019. "Green warehousing: systematic literature review and bibliometric analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 112369, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    13. Baker, Peter & Canessa, Marco, 2009. "Warehouse design: A structured approach," European Journal of Operational Research, Elsevier, vol. 193(2), pages 425-436, March.
    14. Emanuele Guerrazzi & Valeria Mininno & Davide Aloini & Riccardo Dulmin & Claudio Scarpelli & Marco Sabatini, 2019. "Energy Evaluation of Deep-Lane Autonomous Vehicle Storage and Retrieval System," Sustainability, MDPI, vol. 11(14), pages 1-15, July.
    15. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," Post-Print hal-02312110, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Abbasi & Babek Erdebilli, 2023. "Green Closed-Loop Supply Chain Networks’ Response to Various Carbon Policies during COVID-19," Sustainability, MDPI, vol. 15(4), pages 1-30, February.
    2. Mohammed Alnahhal & Bashir Salah & Mohammed Ruzayqat, 2022. "An Efficient Approach to Investigate the Tradeoff between Double Handling and Needed Capacity in Automated Distribution Centers," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    3. Jarosław Łukasiak & Adam Rosiński & Michał Wiśnios, 2022. "The Issue of Evaluating the Effectiveness of Miniature Safety Fuses as Anti-Damage Systems," Energies, MDPI, vol. 15(11), pages 1-18, May.
    4. Daria Minashkina & Ari Happonen, 2023. "Warehouse Management Systems for Social and Environmental Sustainability: A Systematic Literature Review and Bibliometric Analysis," Logistics, MDPI, vol. 7(3), pages 1-33, July.
    5. Miljenko Mustapić & Maja Trstenjak & Petar Gregurić & Tihomir Opetuk, 2023. "Implementation and Use of Digital, Green and Sustainable Technologies in Internal and External Transport of Manufacturing Companies," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    6. Jacek Paś, 2023. "Issues Related to Power Supply Reliability in Integrated Electronic Security Systems Operated in Buildings and Vast Areas," Energies, MDPI, vol. 16(8), pages 1-22, April.
    7. Valentin Carlan & David Ceulemans & Edwin Hassel & Stijn Derammelaere & Thierry Vanelslander, 2023. "Automation in cargo loading/unloading processes: do unmanned loading technologies bring benefits when both purchase and operational cost are considered?," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-25, December.
    8. Mohammed Alnahhal & Bashir Salah & Rafiq Ahmad, 2022. "Increasing Throughput in Warehouses: The Effect of Storage Reallocation and the Location of Input/Output Station," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    9. Martin Johannes du Plessis & Joubert van Eeden & Leila Louise Goedhals-Gerber, 2022. "The Carbon Footprint of Fruit Storage: A Case Study of the Energy and Emission Intensity of Cold Stores," Sustainability, MDPI, vol. 14(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianming Cai & Xiaokang Li & Yue Liang & Shan Ouyang, 2021. "Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
    2. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    3. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    4. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    6. Bortolini, Marco & Faccio, Maurizio & Ferrari, Emilio & Gamberi, Mauro & Pilati, Francesco, 2017. "Time and energy optimal unit-load assignment for automatic S/R warehouses," International Journal of Production Economics, Elsevier, vol. 190(C), pages 133-145.
    7. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    8. Vidal Vieira, José Geraldo & Ramos Toso, Milton & da Silva, João Eduardo Azevedo Ramos & Cabral Ribeiro, Priscilla Cristina, 2017. "An AHP-based framework for logistics operations in distribution centres," International Journal of Production Economics, Elsevier, vol. 187(C), pages 246-259.
    9. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    10. Thierry Sauvage & Tony Cragg & Sarrah Chraibi & Oussama El Khalil Houssaini, 2018. "Running the Machine Faster: Acceleration, Humans and Warehousing," Post-Print hal-02905068, HAL.
    11. Janka Saderova & Andrea Rosova & Marian Sofranko & Peter Kacmary, 2021. "Example of Warehouse System Design Based on the Principle of Logistics," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    12. van Gils, Teun & Ramaekers, Katrien & Braekers, Kris & Depaire, Benoît & Caris, An, 2018. "Increasing order picking efficiency by integrating storage, batching, zone picking, and routing policy decisions," International Journal of Production Economics, Elsevier, vol. 197(C), pages 243-261.
    13. Atashi Khoei, Arsham & Süral, Haldun & Tural, Mustafa Kemal, 2023. "Energy minimizing order picker forklift routing problem," European Journal of Operational Research, Elsevier, vol. 307(2), pages 604-626.
    14. Nils Boysen & Konrad Stephan & Felix Weidinger, 2019. "Manual order consolidation with put walls: the batched order bin sequencing problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 169-193, June.
    15. Boysen, Nils & Emde, Simon & Hoeck, Michael & Kauderer, Markus, 2015. "Part logistics in the automotive industry: Decision problems, literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 242(1), pages 107-120.
    16. Boysen, Nils & Briskorn, Dirk & Emde, Simon, 2017. "Sequencing of picking orders in mobile rack warehouses," European Journal of Operational Research, Elsevier, vol. 259(1), pages 293-307.
    17. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    18. Chen, Gang & Feng, Haolin & Luo, Kaiyi & Tang, Yanli, 2021. "Retrieval-oriented storage relocation optimization of an automated storage and retrieval system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    19. Manzini, Riccardo & Accorsi, Riccardo & Gamberi, Mauro & Penazzi, Stefano, 2015. "Modeling class-based storage assignment over life cycle picking patterns," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 790-800.
    20. Sara Perotti & Lorenzo Bruno Prataviera & Marco Melacini, 2022. "Assessing the environmental impact of logistics sites through CO2eq footprint computation," Business Strategy and the Environment, Wiley Blackwell, vol. 31(4), pages 1679-1694, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2709-:d:550945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.