IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5644-d556925.html
   My bibliography  Save this article

Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems

Author

Listed:
  • Jianming Cai

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
    Smart Transport Key Laboratory of Hunan Province, Changsha 410075, China)

  • Xiaokang Li

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
    Smart Transport Key Laboratory of Hunan Province, Changsha 410075, China)

  • Yue Liang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

  • Shan Ouyang

    (School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China)

Abstract

The robotic mobile fulfillment system (RMFS) is a new automatic warehousing system, a type of green technology, and an emerging trend in the logistics industry. In this study, we take an RMFS as the research object and combine the connected issues of storage location assignment and path planning into one optimization problem from the perspective of collaborative optimization. A sustainable mathematical model for the collaborative optimization of storage location assignment and path planning (COSLAPP) is established, which considers the relationship between the location assignment of goods and rack storage and path planning in an RMFS. On this basis, we propose a location assignment strategy for goods clustering and rack turnover, which utilizes reservation tables, sets AGV operation rules to resolve AGV running conflicts, and improves the A-star(A*) algorithm based on the node load to find the shortest path by which the AGV handling the racks can complete the order picking. Ultimately, simulation studies were performed to ascertain the effectiveness of COSLAPP in the RMFS; the results show that the new approach can significantly improve order picking efficiency, reduce energy consumption, and lessen the operating costs of the warehouse of a distribution center.

Suggested Citation

  • Jianming Cai & Xiaokang Li & Yue Liang & Shan Ouyang, 2021. "Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 13(10), pages 1-26, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5644-:d:556925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5644/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5644/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merschformann, M. & Lamballais, T. & de Koster, M.B.M. & Suhl, L., 2019. "Decision rules for robotic mobile fulfillment systems," Operations Research Perspectives, Elsevier, vol. 6(C).
    2. Zou, Bipan & Xu, Xianhao & Gong, Yeming (Yale) & De Koster, René, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," European Journal of Operational Research, Elsevier, vol. 267(2), pages 733-753.
    3. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    4. Sevilay Onal & Jingran Zhang & Sanchoy Das, 2017. "Modelling and performance evaluation of explosive storage policies in internet fulfilment warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 5902-5915, October.
    5. Weidinger, Felix & Boysen, Nils, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 126188, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    6. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2007. "Research on warehouse operation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 177(1), pages 1-21, February.
    7. Fujii, Hidemichi & Managi, Shunsuke, 2019. "Decomposition analysis of sustainable green technology inventions in China," Technological Forecasting and Social Change, Elsevier, vol. 139(C), pages 10-16.
    8. Rong Yuan & Tolga Cezik & Stephen C. Graves, 2018. "Stowage decisions in multi-zone storage systems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 333-343, January.
    9. Fichtinger, J. & Ries, J. M. & Grosse, E. H. & Baker, P., 2015. "Assessing the environmental impact of integrated inventory and warehouse management," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 74211, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    10. Jingtian Zhang & Fuxing Yang & Xun Weng, 2019. "A Building-Block-Based Genetic Algorithm for Solving the Robots Allocation Problem in a Robotic Mobile Fulfilment System," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-15, February.
    11. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    12. Jingjing Hao & Haoming Shi & Victor Shi & Chenchen Yang, 2020. "Adoption of Automatic Warehousing Systems in Logistics Firms: A Technology–Organization–Environment Framework," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
    13. Bipan Zou & Yeming Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," Post-Print hal-02312005, HAL.
    14. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    15. Felix Weidinger & Nils Boysen, 2018. "Scattered Storage: How to Distribute Stock Keeping Units All Around a Mixed-Shelves Warehouse," Service Science, INFORMS, vol. 52(6), pages 1412-1427, December.
    16. Fichtinger, Johannes & Ries, Jörg M. & Grosse, Eric H. & Baker, Peter, 2015. "Assessing the environmental impact of integrated inventory and warehouse management," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 717-729.
    17. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    18. Bipan Zou & Yeming (Yale) Gong & Xianhao Xu & Zhe Yuan, 2017. "Assignment rules in robotic mobile fulfilment systems for online retailers," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6175-6192, October.
    19. Lamballais, T. & Roy, D. & De Koster, M.B.M., 2017. "Estimating performance in a Robotic Mobile Fulfillment System," European Journal of Operational Research, Elsevier, vol. 256(3), pages 976-990.
    20. Bartolini, M. & Bottani, E. & Grosse, E. H., 2019. "Green warehousing: systematic literature review and bibliometric analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 112369, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    21. Zhe Yuan & Yeming Gong, 2017. "Bot-In-Time Delivery for Robotic Mobile Fulfillment Systems," Post-Print hal-02311982, HAL.
    22. Bipan Zou & Xianhao Xu & Yeming Gong & René de Koster, 2018. "Evaluating battery charging and swapping strategies in a robotic mobile fulfillment system," Post-Print hal-02312110, HAL.
    23. Yeming Gong & Mingzhou Jin & Zhe Yuan, 2021. "Robotic mobile fulfilment systems considering customer classes," Post-Print hal-03188177, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Alnahhal & Bashir Salah & Mohammed Ruzayqat, 2022. "An Efficient Approach to Investigate the Tradeoff between Double Handling and Needed Capacity in Automated Distribution Centers," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    2. Xuan Zhang & Tiantian Mo & Yougong Zhang, 2023. "Optimization of Storage Location Assignment for Non-Traditional Layout Warehouses Based on the Firework Algorithm," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    3. Agnieszka A. Tubis & Honorata Poturaj, 2022. "Risk Related to AGV Systems—Open-Access Literature Review," Energies, MDPI, vol. 15(23), pages 1-23, November.
    4. Yi Li & Zhiyang Li, 2022. "Shuttle-Based Storage and Retrieval System: A Literature Review," Sustainability, MDPI, vol. 14(21), pages 1-18, November.
    5. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    6. Mohammed Alnahhal & Bashir Salah & Rafiq Ahmad, 2022. "Increasing Throughput in Warehouses: The Effect of Storage Reallocation and the Location of Input/Output Station," Sustainability, MDPI, vol. 14(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhuang, Yanling & Zhou, Yun & Yuan, Yufei & Hu, Xiangpei & Hassini, Elkafi, 2022. "Order picking optimization with rack-moving mobile robots and multiple workstations," European Journal of Operational Research, Elsevier, vol. 300(2), pages 527-544.
    2. Zhuang, Yanling & Zhou, Yun & Hassini, Elkafi & Yuan, Yufei & Hu, Xiangpei, 2022. "Rack retrieval and repositioning optimization problem in robotic mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Gharehgozli, Amir & Zaerpour, Nima, 2020. "Robot scheduling for pod retrieval in a robotic mobile fulfillment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Jiang, Min & Leung, K.H. & Lyu, Zhongyuan & Huang, George Q., 2020. "Picking-replenishment synchronization for robotic forward-reserve warehouses," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    5. Xie, Lin & Thieme, Nils & Krenzler, Ruslan & Li, Hanyi, 2021. "Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 288(1), pages 80-97.
    6. Boysen, Nils & de Koster, René & Weidinger, Felix, 2019. "Warehousing in the e-commerce era: A survey," European Journal of Operational Research, Elsevier, vol. 277(2), pages 396-411.
    7. Justkowiak, Jan-Erik & Pesch, Erwin, 2023. "Stronger mixed-integer programming-formulations for order- and rack-sequencing in robotic mobile fulfillment systems," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1063-1078.
    8. Roy, Debjit & Nigam, Shobhit & de Koster, René & Adan, Ivo & Resing, Jacques, 2019. "Robot-storage zone assignment strategies in mobile fulfillment systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 119-142.
    9. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    10. Fragapane, Giuseppe & de Koster, René & Sgarbossa, Fabio & Strandhagen, Jan Ola, 2021. "Planning and control of autonomous mobile robots for intralogistics: Literature review and research agenda," European Journal of Operational Research, Elsevier, vol. 294(2), pages 405-426.
    11. Lamballais, T. & Merschformann, M. & Roy, D. & de Koster, M.B.M. & Azadeh, K. & Suhl, L., 2022. "Dynamic policies for resource reallocation in a robotic mobile fulfillment system with time-varying demand," European Journal of Operational Research, Elsevier, vol. 300(3), pages 937-952.
    12. Jiang, Min & Huang, George Q., 2022. "Intralogistics synchronization in robotic forward-reserve warehouses for e-commerce last-mile delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    13. Bingqian WANG & Xiuqing YANG & Mingyao QI, 2023. "Order and rack sequencing in a robotic mobile fulfillment system with multiple picking stations," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 509-547, June.
    14. Russell Allgor & Tolga Cezik & Daniel Chen, 2023. "Algorithm for Robotic Picking in Amazon Fulfillment Centers Enables Humans and Robots to Work Together Effectively," Interfaces, INFORMS, vol. 53(4), pages 266-282, July.
    15. Xu, Xianhao & Chen, Yuerong & Zou, Bipan & Gong, Yeming, 2022. "Assignment of parcels to loading stations in robotic sorting systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    16. Kaveh Azadeh & René De Koster & Debjit Roy, 2019. "Robotized and Automated Warehouse Systems: Review and Recent Developments," Transportation Science, INFORMS, vol. 53(4), pages 917-945, July.
    17. Onal, Sevilay & Zhu, Wen & Das, Sanchoy, 2023. "Order picking heuristics for online order fulfillment warehouses with explosive storage," International Journal of Production Economics, Elsevier, vol. 256(C).
    18. Li, Xiaowei & Hua, Guowei & Huang, Anqiang & Sheu, Jiuh-Biing & Cheng, T.C.E. & Huang, Fengquan, 2020. "Storage assignment policy with awareness of energy consumption in the Kiva mobile fulfilment system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 144(C).
    19. Guo, Xiaolong & Chen, Ran & Du, Shaofu & Yu, Yugang, 2021. "Storage assignment for newly arrived items in forward picking areas with limited open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    20. Kumar, Suryakant & Sheu, Jiuh-Biing & Kundu, Tanmoy, 2023. "Planning a parts-to-picker order picking system with consideration of the impact of perceived workload," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5644-:d:556925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.