IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i11p5051-d1668881.html
   My bibliography  Save this article

Research on Composite Robot Scheduling and Task Allocation for Warehouse Logistics Systems

Author

Listed:
  • Shuzhao Dong

    (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Bin Yang

    (Institute of Logistics Science and Engineering, Shanghai Maritime University, Shanghai 201306, China)

Abstract

With the rapid development of e-commerce, warehousing and logistics systems are facing the dual challenges of increasing order processing demand and green and low-carbon transformation. Traditional manual and single-robot scheduling methods are not only limited in efficiency, but will also make it difficult to meet the strategic needs of sustainable development due to their high energy consumption and resource redundancy. Therefore, in order to respond to the sustainable development goals of green logistics and resource optimization, this paper replaces the traditional mobile handling robot in warehousing and logistics with a composite robot composed of a mobile chassis and a robotic arm, which reduces energy consumption and labor costs by reducing manual intervention and improving the level of automation. Based on the traditional contract net protocol framework, a distributed task allocation strategy optimization method based on an improved genetic algorithm is proposed. This framework achieves real-time optimization of the robot task list and enhances the rationality of the task allocation strategy. By combining the improved genetic algorithm with the contract net protocol, multi-robot multi-task allocation is realized. The experimental results show that the improvement strategy can effectively support the transformation of the warehousing and logistics system to a low-carbon and intelligent sustainable development mode while improving the rationality of task allocation.

Suggested Citation

  • Shuzhao Dong & Bin Yang, 2025. "Research on Composite Robot Scheduling and Task Allocation for Warehouse Logistics Systems," Sustainability, MDPI, vol. 17(11), pages 1-27, May.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5051-:d:1668881
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/11/5051/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/11/5051/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:11:p:5051-:d:1668881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.