IDEAS home Printed from https://ideas.repec.org/a/spr/josatr/v8y2023i1d10.1186_s41072-023-00146-9.html
   My bibliography  Save this article

Automation in cargo loading/unloading processes: do unmanned loading technologies bring benefits when both purchase and operational cost are considered?

Author

Listed:
  • Valentin Carlan

    (University of Antwerp)

  • David Ceulemans

    (University of Antwerp
    AnSyMo/Cosys)

  • Edwin Hassel

    (University of Antwerp)

  • Stijn Derammelaere

    (University of Antwerp
    AnSyMo/Cosys)

  • Thierry Vanelslander

    (University of Antwerp)

Abstract

The use of technologies that automate handling goods and loading units in warehouses and depots is not new. Yet, the purchase process of these technologies issues troubles and the estimation of the economic advantages brought by one or another technology to the entire chain of operations in logistics are not always known. Faults or not documented decisions put pressure on managers and prices for services. They can cause a drop in the competitiveness of warehouse operators, particularly in uncertain conditions. Academia documented the cost of warehouse storage well. Yet, little research has looked into the economic justification of implementing automatic systems for loading or unloading activities and the impact on complementary operations. For this reason, a model is needed to calculate the cost of operations when different technical equipment is used. This research further investigates the cost categories that must be considered when purchasing automated loading/unloading technologies. The model includes the purchase and operational loading costs that new technologies generate and the cost of adjacent operations to loading activity. The case study uses forklifts as the reference scenario and provides an overview of the return on investment and a break-even period when other technologies are in use. The calculation model shows that increasing cargo volume leads to a better RoI. The same observation is also made regarding the rise in labour costs. For the latter, using human operators to handle pallets on a one-by-one basis generates an exponential increase in operational cost due to delays and faults. On the other side, the cost of implementing automated loading/unloading technologies and the consideration of technology risk determine the low economic advantages. An in-depth cost and benefit analysis shows in which situation a technology generates greater benefits. Further results of this paper show that better use of trucks' loading capacity can positively impact the financial performance of automated loading technologies, as a higher volume of cargo is moved (at once) without human intervention.

Suggested Citation

  • Valentin Carlan & David Ceulemans & Edwin Hassel & Stijn Derammelaere & Thierry Vanelslander, 2023. "Automation in cargo loading/unloading processes: do unmanned loading technologies bring benefits when both purchase and operational cost are considered?," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-25, December.
  • Handle: RePEc:spr:josatr:v:8:y:2023:i:1:d:10.1186_s41072-023-00146-9
    DOI: 10.1186/s41072-023-00146-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s41072-023-00146-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1186/s41072-023-00146-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mallidis, Ioannis & Dekker, Rommert & Vlachos, Dimitrios, 2012. "The impact of greening on supply chain design and cost: a case for a developing region," Journal of Transport Geography, Elsevier, vol. 22(C), pages 118-128.
    2. Hwi Kim, Sang & Hwang, Hark, 1999. "An adaptive dispatching algorithm for automated guided vehicles based on an evolutionary process," International Journal of Production Economics, Elsevier, vol. 60(1), pages 465-472, April.
    3. Berg, J. P. van den & Zijm, W. H. M., 1999. "Models for warehouse management: Classification and examples," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 519-528, March.
    4. Sainathuni, Bhanuteja & Parikh, Pratik J. & Zhang, Xinhui & Kong, Nan, 2014. "The warehouse-inventory-transportation problem for supply chains," European Journal of Operational Research, Elsevier, vol. 237(2), pages 690-700.
    5. Jingjing Hao & Haoming Shi & Victor Shi & Chenchen Yang, 2020. "Adoption of Automatic Warehousing Systems in Logistics Firms: A Technology–Organization–Environment Framework," Sustainability, MDPI, vol. 12(12), pages 1-14, June.
    6. Konrad Lewczuk & Michał Kłodawski & Paweł Gepner, 2021. "Energy Consumption in a Distributional Warehouse: A Practical Case Study for Different Warehouse Technologies," Energies, MDPI, vol. 14(9), pages 1-25, May.
    7. Rouwenhorst, B. & Reuter, B. & Stockrahm, V. & van Houtum, G. J. & Mantel, R. J. & Zijm, W. H. M., 2000. "Warehouse design and control: Framework and literature review," European Journal of Operational Research, Elsevier, vol. 122(3), pages 515-533, May.
    8. Warren H. Hausman & Leroy B. Schwarz & Stephen C. Graves, 1976. "Optimal Storage Assignment in Automatic Warehousing Systems," Management Science, INFORMS, vol. 22(6), pages 629-638, February.
    9. Öztürkoğlu, Ö. & Gue, K.R. & Meller, R.D., 2014. "A constructive aisle design model for unit-load warehouses with multiple pickup and deposit points," European Journal of Operational Research, Elsevier, vol. 236(1), pages 382-394.
    10. Mason, Scott J. & Mauricio Ribera, P. & Farris, Jennifer A. & Kirk, Randall G., 2003. "Integrating the warehousing and transportation functions of the supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(2), pages 141-159, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    2. Mohammed Alnahhal & Bashir Salah & Rafiq Ahmad, 2022. "Increasing Throughput in Warehouses: The Effect of Storage Reallocation and the Location of Input/Output Station," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    3. de Koster, M.B.M. & Le-Duc, T. & Roodbergen, K.J., 2006. "Design and Control of Warehouse Order Picking: a literature review," ERIM Report Series Research in Management ERS-2006-005-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Derhami, Shahab & Smith, Jeffrey S. & Gue, Kevin R., 2020. "A simulation-based optimization approach to design optimal layouts for block stacking warehouses," International Journal of Production Economics, Elsevier, vol. 223(C).
    5. Çağla Cergibozan & A. Serdar Tasan, 2019. "Order batching operations: an overview of classification, solution techniques, and future research," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 335-349, January.
    6. Strack, Géraldine & Pochet, Yves, 2010. "An integrated model for warehouse and inventory planning," European Journal of Operational Research, Elsevier, vol. 204(1), pages 35-50, July.
    7. Lim, Ming K. & Bahr, Witold & Leung, Stephen C.H., 2013. "RFID in the warehouse: A literature analysis (1995–2010) of its applications, benefits, challenges and future trends," International Journal of Production Economics, Elsevier, vol. 145(1), pages 409-430.
    8. Shahab Derhami & Jeffrey S. Smith & Kevin R. Gue, 2017. "Optimising space utilisation in block stacking warehouses," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6436-6452, November.
    9. Miljenko Mustapić & Maja Trstenjak & Petar Gregurić & Tihomir Opetuk, 2023. "Implementation and Use of Digital, Green and Sustainable Technologies in Internal and External Transport of Manufacturing Companies," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    10. Mohammed Alnahhal & Bashir Salah & Mohammed Ruzayqat, 2022. "An Efficient Approach to Investigate the Tradeoff between Double Handling and Needed Capacity in Automated Distribution Centers," Sustainability, MDPI, vol. 14(13), pages 1-25, June.
    11. Chen, Lu & Langevin, André & Riopel, Diane, 2011. "A tabu search algorithm for the relocation problem in a warehousing system," International Journal of Production Economics, Elsevier, vol. 129(1), pages 147-156, January.
    12. Gagliardi, Jean-Philippe & Ruiz, Angel & Renaud, Jacques, 2008. "Space allocation and stock replenishment synchronization in a distribution center," International Journal of Production Economics, Elsevier, vol. 115(1), pages 19-27, September.
    13. de Jesus Pacheco, Diego Augusto & Møller Clausen, Daniel & Bumann, Jendrik, 2023. "A multi-method approach for reducing operational wastes in distribution warehouses," International Journal of Production Economics, Elsevier, vol. 256(C).
    14. Gu, Jinxiang & Goetschalckx, Marc & McGinnis, Leon F., 2010. "Research on warehouse design and performance evaluation: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 203(3), pages 539-549, June.
    15. Yu, Y. & de Koster, M.B.M., 2009. "On the Suboptimality of Full Turnover-Based Storage," ERIM Report Series Research in Management ERS-2009-051-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Ming-Jong Yao & Jia-Yen Huang, 2017. "Optimal lot-sizing and joint replenishment strategy under a piecewise linear warehousing cost structure," Journal of Intelligent Manufacturing, Springer, vol. 28(3), pages 791-803, March.
    17. Bortolini, Marco & Faccio, Maurizio & Gamberi, Mauro & Manzini, Riccardo, 2015. "Diagonal cross-aisles in unit load warehouses to increase handling performance," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 838-849.
    18. Muppani (Muppant), Venkata Reddy & Adil, Gajendra Kumar, 2008. "Efficient formation of storage classes for warehouse storage location assignment: A simulated annealing approach," Omega, Elsevier, vol. 36(4), pages 609-618, August.
    19. Boysen, Nils & Schwerdfeger, Stefan & Stephan, Konrad, 2023. "A review of synchronization problems in parts-to-picker warehouses," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1374-1390.
    20. Jianming Cai & Xiaokang Li & Yue Liang & Shan Ouyang, 2021. "Collaborative Optimization of Storage Location Assignment and Path Planning in Robotic Mobile Fulfillment Systems," Sustainability, MDPI, vol. 13(10), pages 1-26, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:josatr:v:8:y:2023:i:1:d:10.1186_s41072-023-00146-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.