IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2637-d548882.html
   My bibliography  Save this article

Modeling the Effectiveness of Intelligent Systems in Public Transport That Uses Low-Carbon Energy: A Case Study

Author

Listed:
  • Justyna Patalas-Maliszewska

    (Institute of Mechanical Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Hanna Łosyk

    (Institute of Mechanical Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Jacek Newelski

    (Municipal Department of Transport in the city of Zielona Góra, 65-713 Zielona Góra, Poland)

Abstract

Cities have been struggling for many years with many transport problems, including the impact of carbon monoxide emitted by vehicles on the environment, traffic jams, high energy consumption, numerous accidents or high infrastructure costs. There is also a dynamic growth of vehicles on the roads, which is why an increasing number of cities are introducing intelligent transportation systems (ITS), which is part of the concept of smart cities. This paper proposes a new matrix to assess the effects of the ITS implementation in the context of a concept Smart City, which consists of five criteria: (1) movement speed; (2) safety; (3) environmental; (4) economic; (5) satisfaction and amenities for society/passengers. In this new approach the benchmark values of the indicators assigned to the criteria are involved and, therefore, it is possible to determine the level of effectiveness of the ITS in public transport that uses low-carbon energy. This research used literature studies to establish the criteria of effectiveness of ITS as well as a case study, namely public transport that uses low-carbon energy in a Polish city, which had the largest fleet of electric buses in Poland and implements and uses an ITS. Both, the theoretical and the empirical research results demonstrate the usefulness and potency of the proposed matrix to assess the effects of the ITS implementation in cities in the context of the development of a smart city. In that way, the proposed approach may be a useful tool for measuring the effects of ITS implementation in cities.

Suggested Citation

  • Justyna Patalas-Maliszewska & Hanna Łosyk & Jacek Newelski, 2021. "Modeling the Effectiveness of Intelligent Systems in Public Transport That Uses Low-Carbon Energy: A Case Study," Energies, MDPI, vol. 14(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2637-:d:548882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2637/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2637/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Watkins, Kari Edison & Ferris, Brian & Borning, Alan & Rutherford, G. Scott & Layton, David, 2011. "Where Is My Bus? Impact of mobile real-time information on the perceived and actual wait time of transit riders," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 839-848, October.
    2. Lazaroiu, George Cristian & Roscia, Mariacristina, 2012. "Definition methodology for the smart cities model," Energy, Elsevier, vol. 47(1), pages 326-332.
    3. Anna R. Davies & Sue J. Mullin, 2011. "Greening the economy: interrogating sustainability innovations beyond the mainstream," Journal of Economic Geography, Oxford University Press, vol. 11(5), pages 793-816, September.
    4. Lourdes Torres & Vicente Pina & Sonia Royo, 2005. "E-government and the transformation of public administrations in EU countries: Beyond NPM or just a second wave of reforms?," Documentos de Trabajo dt2005-01, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    5. Justyna Patalas-Maliszewska & Hanna Łosyk, 2020. "Analysis of the Development and Parameters of a Public Transport System Which Uses Low-Carbon Energy: The Evidence from Poland," Energies, MDPI, vol. 13(21), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Wojciech Szulc & Grzegorz Krawczyk & Seweryn Tchórzewski, 2021. "Models of Delivery of Sustainable Public Transportation Services in Metropolitan Areas–Comparison of Conventional, Battery Powered and Hydrogen Fuel-Cell Drives," Energies, MDPI, vol. 14(22), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarker, Rumana Islam & Kaplan, Sigal & Mailer, Markus & Timmermans, Harry J.P., 2019. "Applying affective event theory to explain transit users’ reactions to service disruptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 593-605.
    2. Sabina Baraniewicz-Kotasińska, 2022. "The Scandinavian Third Way as a Proposal for Sustainable Smart City Development—A Case Study of Aarhus City," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    3. Bounie, Nathan & Adoue, François & Koning, Martin & L'Hostis, Alain, 2019. "What value do travelers put on connectivity to mobile phone and Internet networks in public transport? Empirical evidence from the Paris region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 158-177.
    4. Osiris Jorge Parcero & James Christopher Ryan, 2017. "Becoming a Knowledge Economy: the Case of Qatar, UAE, and 17 Benchmark Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 8(4), pages 1146-1173, December.
    5. Thanh Nguyen, Phong & Anh Nguyen, Thu & Huynh Tat Tran, Thang, 2021. "Barrier Factors Affecting Development of Intelligent Transport System Projects," MPRA Paper 112006, University Library of Munich, Germany, revised 09 Dec 2021.
    6. Łukasz Brzeziński & Magdalena Krystyna Wyrwicka, 2022. "Fundamental Directions of the Development of the Smart Cities Concept and Solutions in Poland," Energies, MDPI, vol. 15(21), pages 1-52, November.
    7. Mulley, Corinne & Clifton, Geoffrey Tilden & Balbontin, Camila & Ma, Liang, 2017. "Information for travelling: Awareness and usage of the various sources of information available to public transport users in NSW," Transportation Research Part A: Policy and Practice, Elsevier, vol. 101(C), pages 111-132.
    8. Izabela Jonek-Kowalska & Radosław Wolniak, 2022. "Sharing Economies’ Initiatives in Municipal Authorities’ Perspective: Research Evidence from Poland in the Context of Smart Cities’ Development," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    9. Wang, Yuanping & Ren, Hong & Dong, Liang & Park, Hung-Suck & Zhang, Yuepeng & Xu, Yanwei, 2019. "Smart solutions shape for sustainable low-carbon future: A review on smart cities and industrial parks in China," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 103-117.
    10. Anne Brown & Whitney LaValle, 2021. "Hailing a change: comparing taxi and ridehail service quality in Los Angeles," Transportation, Springer, vol. 48(2), pages 1007-1031, April.
    11. Ra�l Comp�s & Samuel Faria & T�nia Gon�alves & Vicente Pinilla & Jo�o Rebelo & Katrin Sim�n-Elorz, 2021. "The shock of lockdown on the spending on wine in the Iberian market: the effects of procurement and consumption patterns," Documentos de Trabajo dt2021-04, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    12. Ra�l Serrano & Isabel Acero-Fraile & Natalia Dejo-Oricain, 2017. "Collaborative networks and export intensity in family firms: a quantile regression approach," Documentos de Trabajo dt2017-04, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    13. Justyna Żywiołek & Francesco Schiavone, 2021. "Perception of the Quality of Smart City Solutions as a Sense of Residents’ Safety," Energies, MDPI, vol. 14(17), pages 1-16, September.
    14. Patricia Bachiller & Mar�a Jos� Arcas, 2006. "Performance and capital structure of privatized firms in the european union," Documentos de Trabajo dt2006-02, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    15. Csukás Máté Szilárd & Roland Z. Szabó, 2018. "Factors Hindering Smart City Developments in Medium-Sized Cities," Theory Methodology Practice (TMP), Faculty of Economics, University of Miskolc, vol. 14(01), pages 3-14.
    16. Wessel, Nate & Allen, Jeff & Farber, Steven, 2017. "Constructing a routable retrospective transit timetable from a real-time vehicle location feed and GTFS," Journal of Transport Geography, Elsevier, vol. 62(C), pages 92-97.
    17. Kuo, Pei-Fen & Lord, Dominique, 2013. "Accounting for site-selection bias in before–after studies for continuous distributions: Characteristics and application using speed data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 256-269.
    18. David Levinson & Hao Wu, 2020. "Towards a general theory of access," Working Papers 2022-01, University of Minnesota: Nexus Research Group.
    19. Edyta Bielińska-Dusza & Monika Hamerska & Agnieszka Żak, 2021. "Sustainable Mobility and the Smart City: A Vision of the City of the Future: The Case Study of Cracow (Poland)," Energies, MDPI, vol. 14(23), pages 1-25, November.
    20. Parul Gupta & Sumedha Chauhan & M. P. Jaiswal, 2019. "Classification of Smart City Research - a Descriptive Literature Review and Future Research Agenda," Information Systems Frontiers, Springer, vol. 21(3), pages 661-685, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2637-:d:548882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.