IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5779-d439986.html
   My bibliography  Save this article

Analysis of the Development and Parameters of a Public Transport System Which Uses Low-Carbon Energy: The Evidence from Poland

Author

Listed:
  • Justyna Patalas-Maliszewska

    (Institute of Mechanical Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland)

  • Hanna Łosyk

    (Institute of Mechanical Engineering, University of Zielona Góra, 65-417 Zielona Góra, Poland)

Abstract

Efforts toward a low-emission economy constitute a common challenge for Polish cities. Solutions are being sought to support Polish, medium-sized cities, that is, cities with about 140,000 inhabitants, to implement and develop low-carbon energy in their public transport systems. This paper proposes and explores a sustainable urban development card for a Polish city, namely, Zielona Góra, the use of which will enable the effects of a public transport system using low-carbon energy to be monitored. This research was based on the two main areas of analysis of a system of low-carbon energy and public transport and were formulated as: (1) Sustainable Development Goals (SDGs) and (2) Indicators of the Satisfaction Rate of Public Transport Passengers (SPTP). This paper used literature studies to determine SDGs as well a questionnaire-cum-survey, which was conducted on a sample of 1022 public transport passengers in Zielona Góra, Poland, to determine SPTP. The results were verified by a real case study of a Polish city, which, in 2019, had the largest fleet of electric buses in Poland; a statistical analysis was also conducted using correlation coefficients. It was determined that the proposed approach allows for low carbon energy public transport to be constantly monitored and analyzed. In the long run, this could be a good benchmark as to how cities might improve their level of sustainability.

Suggested Citation

  • Justyna Patalas-Maliszewska & Hanna Łosyk, 2020. "Analysis of the Development and Parameters of a Public Transport System Which Uses Low-Carbon Energy: The Evidence from Poland," Energies, MDPI, vol. 13(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5779-:d:439986
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5779/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5779/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenneth Gillingham & David Rapson & Gernot Wagner, 2016. "The Rebound Effect and Energy Efficiency Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(1), pages 68-88.
    2. Seyfang, Gill & Park, Jung Jin & Smith, Adrian, 2013. "A thousand flowers blooming? An examination of community energy in the UK," Energy Policy, Elsevier, vol. 61(C), pages 977-989.
    3. Rob Kitchin, 2015. "Making sense of smart cities: addressing present shortcomings," Cambridge Journal of Regions, Economy and Society, Cambridge Political Economy Society, vol. 8(1), pages 131-136.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beibei Hu & Airong Xu & Xianlei Dong, 2022. "Evaluating the Comprehensive Development Level and Coordinated Relationships of Urban Multimodal Transportation: A Case Study of China’s Major Cities," Land, MDPI, vol. 11(11), pages 1-28, November.
    2. Aleksy Kwilinski & Oleksii Lyulyov & Tetyana Pimonenko, 2023. "Environmental Sustainability within Attaining Sustainable Development Goals: The Role of Digitalization and the Transport Sector," Sustainability, MDPI, vol. 15(14), pages 1-14, July.
    3. Paola Clerici Maestosi, 2021. "Smart Cities and Positive Energy Districts: Urban Perspectives in 2020," Energies, MDPI, vol. 14(9), pages 1-5, April.
    4. Aleksander Chudy & Piotr Hołyszko & Paweł Mazurek, 2022. "Fast Charging of an Electric Bus Fleet and Its Impact on the Power Quality Based on On-Site Measurements," Energies, MDPI, vol. 15(15), pages 1-16, July.
    5. Justyna Patalas-Maliszewska & Hanna Łosyk & Jacek Newelski, 2021. "Modeling the Effectiveness of Intelligent Systems in Public Transport That Uses Low-Carbon Energy: A Case Study," Energies, MDPI, vol. 14(9), pages 1-13, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Byrne, Rosemary & Byrne, Susan & Ryan, Ray & O’Regan, Bernadette, 2017. "Applying the Q-method to identify primary motivation factors and barriers to communities in achieving decarbonisation goals," Energy Policy, Elsevier, vol. 110(C), pages 40-50.
    2. De Borger, Bruno & Mulalic, Ismir & Rouwendal, Jan, 2016. "Measuring the rebound effect with micro data: A first difference approach," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 1-17.
    3. Katris, Antonios & Turner, Karen, 2021. "Can different approaches to funding household energy efficiency deliver on economic and social policy objectives? ECO and alternatives in the UK," Energy Policy, Elsevier, vol. 155(C).
    4. Frans H. J. M. Coenen & Thomas Hoppe, 2022. "Renewable Energy Communities as a New Actor in Home Energy Savings," Urban Planning, Cogitatio Press, vol. 7(2), pages 108-122.
    5. Klein, Sharon J.W. & Coffey, Stephanie, 2016. "Building a sustainable energy future, one community at a time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 867-880.
    6. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    7. Juliana Silveira dos Santos & Fausto Miziara & Hayla da Silva Fernandes & Renato Cezar Miranda & Rosane Garcia Collevatti, 2021. "Technification in Dairy Farms May Reconcile Habitat Conservation in a Brazilian Savanna Region," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    8. Lemoine, Derek, 2020. "General equilibrium rebound from energy efficiency innovation," European Economic Review, Elsevier, vol. 125(C).
    9. Chien, Fengsheng & Anwar, Ahsan & Hsu, Ching-Chi & Sharif, Arshian & Razzaq, Asif & Sinha, Avik, 2021. "The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries," Technology in Society, Elsevier, vol. 65(C).
    10. Jianglong Li & Zhi Li, 2018. "Understanding the role of economic transition in enlarging energy price elasticity," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 26(2), pages 253-281, April.
    11. Gürsan, C. & de Gooyert, V., 2021. "The systemic impact of a transition fuel: Does natural gas help or hinder the energy transition?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Díaz Antonia & Puch Luis A., 2019. "Investment, technological progress and energy efficiency," The B.E. Journal of Macroeconomics, De Gruyter, vol. 19(2), pages 1-28, June.
    13. Langford, Richard P. & Gillingham, Kenneth, 2023. "Quantifying the benefits of the introduction of the hybrid electric vehicle," International Journal of Industrial Organization, Elsevier, vol. 87(C).
    14. Lorenzo De Vidovich & Luca Tricarico & Matteo Zulianello, 2023. "How Can We Frame Energy Communities’ Organisational Models? Insights from the Research ‘Community Energy Map’ in the Italian Context," Sustainability, MDPI, vol. 15(3), pages 1-25, January.
    15. Greene, David L. & Greenwald, Judith M. & Ciez, Rebecca E., 2020. "U.S. fuel economy and greenhouse gas standards: What have they achieved and what have we learned?," Energy Policy, Elsevier, vol. 146(C).
    16. Stern, David I., 2020. "How large is the economy-wide rebound effect?," Energy Policy, Elsevier, vol. 147(C).
    17. Karen Bickerstaff & Emma Hinton & Harriet Bulkeley, 2016. "Decarbonisation at home: The contingent politics of experimental domestic energy technologies," Environment and Planning A, , vol. 48(10), pages 2006-2025, October.
    18. Chen, Zhongfei & Huang, Wanjing & Zheng, Xian, 2019. "The decline in energy intensity: Does financial development matter?," Energy Policy, Elsevier, vol. 134(C).
    19. Cassetta, Ernesto & Marra, Alessandro & Pozzi, Cesare & Antonelli, Paola, 2017. "Emerging technological trajectories and new mobility solutions. A large-scale investigation on transport-related innovative start-ups and implications for policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 1-11.
    20. Nuñez-Jimenez, Alejandro & Mehta, Prakhar & Griego, Danielle, 2023. "Let it grow: How community solar policy can increase PV adoption in cities," Energy Policy, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5779-:d:439986. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.