IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i7p1955-d528803.html
   My bibliography  Save this article

Energy and GHG Emissions Aspects of the COVID Impact in Greece

Author

Listed:
  • Dimitri Lalas

    (FACE 3 TS S.A., 1 Agiou Isidorou Str., 11471 Athens, Greece)

  • Nikolaos Gakis

    (FACE 3 TS S.A., 1 Agiou Isidorou Str., 11471 Athens, Greece)

  • Sebastian Mirasgedis

    (National Observatory of Athens, Lofos Nymfon, Thesseon, 11810 Athens, Greece)

  • Elena Georgopoulou

    (National Observatory of Athens, Lofos Nymfon, Thesseon, 11810 Athens, Greece)

  • Yannis Sarafidis

    (National Observatory of Athens, Lofos Nymfon, Thesseon, 11810 Athens, Greece)

  • Haris Doukas

    (Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Iroon Politechniou 9, 15780 Athens, Greece)

Abstract

The effects of COVID-19 have had devasting effects on both health and economies in 2020. At the same time, the lockdown and the downturn of economic activity resulted in a decrease in energy consumption and an accompanying reduction in greenhouse gas emissions. In this article, a comparison with the temperature adjustment of energy use is presented for the main carriers of electricity, natural gas, and oil products in the residential, tertiary, industry, and transport (road transport, domestic aviation, and navigation) sectors in 2020 against the previous two years in Greece, along with the corresponding emissions. As the comparison covers the entire year, both COVID peaks in the March–April and November–December periods and the corresponding lockdown effects as well as seasonal variations are included. The analysis shows a reduction, adjusted for temperature, of 3528 GWh in electricity and 10,286 GWh in transport, and an increase of 1916 GWh in heating and other final uses for a net 11,898 GWh decrease and a resulting emissions reduction of 3.48 MtCO 2 eq (1.29 MtCO 2 eq in electricity, 2.69 MtCO 2 eq in transport, and an increase of 0.54 MtCO 2 eq in heating), or 4.1%, from total national emissions in 2019. The effect is, to a considerable extent, the result of drastic tourist activity contraction, which is starkly evident in the electricity consumption in the Aegean islands. The comparison between the two lockdown periods brings out clear differences, with the reduction in the second one being considerably smaller as the population reverted, to a large extent, to pre-COVID behavior, which implies that no permanent gains from the COVID long-term impact toward decarbonization should be expected.

Suggested Citation

  • Dimitri Lalas & Nikolaos Gakis & Sebastian Mirasgedis & Elena Georgopoulou & Yannis Sarafidis & Haris Doukas, 2021. "Energy and GHG Emissions Aspects of the COVID Impact in Greece," Energies, MDPI, vol. 14(7), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1955-:d:528803
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/7/1955/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/7/1955/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haris Doukas & Alexandros Nikas & Giorgos Stamtsis & Ioannis Tsipouridis, 2020. "The Green Versus Green Trap and a Way Forward," Energies, MDPI, vol. 13(20), pages 1-6, October.
    2. Mukherjee, Sayanti & Vineeth, C.R. & Nateghi, Roshanak, 2019. "Evaluating regional climate-electricity demand nexus: A composite Bayesian predictive framework," Applied Energy, Elsevier, vol. 235(C), pages 1561-1582.
    3. Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
    4. Jean Gaston Tamba & Salom Ndjakomo Essiane & Emmanuel Flavian Sapnken & Francis Djanna Koffi & Jean Luc Nsouand l & Bozidar Soldo & Donatien Njomo, 2018. "Forecasting Natural Gas: A Literature Survey," International Journal of Energy Economics and Policy, Econjournals, vol. 8(3), pages 216-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Indre Siksnelyte-Butkiene, 2021. "Impact of the COVID-19 Pandemic to the Sustainability of the Energy Sector," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    2. Tomasz Wołowiec & Iuliia Myroshnychenko & Ihor Vakulenko & Sylwester Bogacki & Anna Maria Wiśniewska & Svitlana Kolosok & Vitaliy Yunger, 2022. "International Impact of COVID-19 on Energy Economics and Environmental Pollution: A Scoping Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    3. Lukas Hartwig & Reinhard Hössinger & Yusak Octavius Susilo & Astrid Gühnemann, 2022. "The Impacts of a COVID-19 Related Lockdown (and Reopening Phases) on Time Use and Mobility for Activities in Austria—Results from a Multi-Wave Combined Survey," Sustainability, MDPI, vol. 14(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    2. Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
    3. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    4. Sofia Dahlgren & Jonas Ammenberg, 2021. "Sustainability Assessment of Public Transport, Part II—Applying a Multi-Criteria Assessment Method to Compare Different Bus Technologies," Sustainability, MDPI, vol. 13(3), pages 1-30, January.
    5. Barman, Mayur & Dev Choudhury, N.B. & Sutradhar, Suman, 2018. "A regional hybrid GOA-SVM model based on similar day approach for short-term load forecasting in Assam, India," Energy, Elsevier, vol. 145(C), pages 710-720.
    6. Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
    7. Soltanisarvestani, A. & Safavi, A.A., 2021. "Modeling unaccounted-for gas among residential natural gas consumers using a comprehensive fuzzy cognitive map," Utilities Policy, Elsevier, vol. 72(C).
    8. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    9. Lam, Joseph C. & Tang, H.L. & Li, Danny H.W., 2008. "Seasonal variations in residential and commercial sector electricity consumption in Hong Kong," Energy, Elsevier, vol. 33(3), pages 513-523.
    10. Diamantis Koutsandreas & Evangelos Spiliotis & Haris Doukas & John Psarras, 2021. "What Is the Macroeconomic Impact of Higher Decarbonization Speeds? The Case of Greece," Energies, MDPI, vol. 14(8), pages 1-19, April.
    11. Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
    12. Son, Hyojoo & Kim, Changwan, 2017. "Short-term forecasting of electricity demand for the residential sector using weather and social variables," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 200-207.
    13. Wang, Lin & Hu, Huanling & Ai, Xue-Yi & Liu, Hua, 2018. "Effective electricity energy consumption forecasting using echo state network improved by differential evolution algorithm," Energy, Elsevier, vol. 153(C), pages 801-815.
    14. Pielow, Amy & Sioshansi, Ramteen & Roberts, Matthew C., 2012. "Modeling short-run electricity demand with long-term growth rates and consumer price elasticity in commercial and industrial sectors," Energy, Elsevier, vol. 46(1), pages 533-540.
    15. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    16. Qiao, Weibiao & Liu, Wei & Liu, Enbin, 2021. "A combination model based on wavelet transform for predicting the difference between monthly natural gas production and consumption of U.S," Energy, Elsevier, vol. 235(C).
    17. Hirano, Y. & Fujita, T., 2012. "Evaluation of the impact of the urban heat island on residential and commercial energy consumption in Tokyo," Energy, Elsevier, vol. 37(1), pages 371-383.
    18. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
    19. Pezalla, Simon & Obringer, Renee, 2023. "Evaluating the household-level climate-electricity nexus across three cities through statistical learning techniques," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    20. Hong, Wei-Chiang, 2010. "Application of chaotic ant swarm optimization in electric load forecasting," Energy Policy, Elsevier, vol. 38(10), pages 5830-5839, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:7:p:1955-:d:528803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.