IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1408-d510243.html
   My bibliography  Save this article

Promoting Public Awareness of Carbon Capture and Storage Technologies in the Russian Federation: A System of Educational Activities

Author

Listed:
  • Yurii Vasilev

    (Department of Economics, Organization and Management, Saint Petersburg Mining University, 2, 21st Line, 199106 Saint Petersburg, Russia)

  • Alexey Cherepovitsyn

    (Department of Economics, Organization and Management, Saint Petersburg Mining University, 2, 21st Line, 199106 Saint Petersburg, Russia)

  • Anna Tsvetkova

    (Department of Economics, Organization and Management, Saint Petersburg Mining University, 2, 21st Line, 199106 Saint Petersburg, Russia)

  • Nadejda Komendantova

    (International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg, Austria)

Abstract

The latest technologies for climate change mitigation are carbon capture and storage (CCS). Some countries are developing CCS projects, and they are currently at different stages of deployment. Despite the signing of international agreements on climate change mitigation, Russia’s efforts to develop and implement CCS technologies are quite limited. Therefore, it is vital that people are aware of the importance of carbon dioxide capture, utilization, and storage. The purpose of this article is to produce guidelines and toolkits to form a system of measures aimed at raising awareness of the Russian society on carbon dioxide capture and storage technologies. The paper discusses the key findings of several recent studies on the topic, e.g., a study focusing on the level of environmental consciousness among St. Petersburg students; a content analysis of the Russian school textbooks; a study of environmental groups in Russian social media; and an experimental study on creating eco-comics and posters as educational tools for promoting environmental awareness. A multi-level system of educational activities is proposed, including events for preschoolers, schoolchildren, students, and adults.

Suggested Citation

  • Yurii Vasilev & Alexey Cherepovitsyn & Anna Tsvetkova & Nadejda Komendantova, 2021. "Promoting Public Awareness of Carbon Capture and Storage Technologies in the Russian Federation: A System of Educational Activities," Energies, MDPI, vol. 14(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1408-:d:510243
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1408/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1408/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirsanova N.Y. & Lenkovets O.M. & Nikulina A.Y., 2018. "The Role and Future Outlook for Renewable Energy in the Arctic Zone of Russian Federation," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 2), pages 356-368.
    2. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    3. Andrea M. Feldpausch-Parker & Morey Burnham & Maryna Melnik & Meaghan L. Callaghan & Theresa Selfa, 2015. "News Media Analysis of Carbon Capture and Storage and Biomass: Perceptions and Possibilities," Energies, MDPI, vol. 8(4), pages 1-17, April.
    4. Kim, Youngmin & Jang, Hochang & Kim, Junggyun & Lee, Jeonghwan, 2017. "Prediction of storage efficiency on CO2 sequestration in deep saline aquifers using artificial neural network," Applied Energy, Elsevier, vol. 185(P1), pages 916-928.
    5. Theo, Wai Lip & Lim, Jeng Shiun & Hashim, Haslenda & Mustaffa, Azizul Azri & Ho, Wai Shin, 2016. "Review of pre-combustion capture and ionic liquid in carbon capture and storage," Applied Energy, Elsevier, vol. 183(C), pages 1633-1663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    2. Dmitry Radoushinsky & Kirill Gogolinskiy & Yousef Dellal & Ivan Sytko & Abhishek Joshi, 2023. "Actual Quality Changes in Natural Resource and Gas Grid Use in Prospective Hydrogen Technology Roll-Out in the World and Russia," Sustainability, MDPI, vol. 15(20), pages 1-31, October.
    3. Ellie Martus & Stephen Fortescue, 2022. "Russian coal in a changing climate: risks and opportunities for industry and government," Climatic Change, Springer, vol. 173(3), pages 1-21, August.
    4. Oksana Marinina & Anna Tsvetkova & Yurii Vasilev & Nadejda Komendantova & Anna Parfenova, 2022. "Evaluating the Downstream Development Strategy of Oil Companies: The Case of Rosneft," Resources, MDPI, vol. 11(1), pages 1-21, January.
    5. Yanbin Li & Yanting Sun & Yulin Kang & Feng Zhang & Junjie Zhang, 2023. "An Optimal Site Selection Framework for Near-Zero Carbon Emission Power Plants Based on Multiple Stakeholders," Energies, MDPI, vol. 16(2), pages 1-26, January.
    6. Oksana Marinina & Marina Nevskaya & Izabela Jonek-Kowalska & Radosław Wolniak & Mikhail Marinin, 2021. "Recycling of Coal Fly Ash as an Example of an Efficient Circular Economy: A Stakeholder Approach," Energies, MDPI, vol. 14(12), pages 1-21, June.
    7. Oksana Marinina & Natalia Kirsanova & Marina Nevskaya, 2022. "Circular Economy Models in Industry: Developing a Conceptual Framework," Energies, MDPI, vol. 15(24), pages 1-21, December.
    8. Kyriaki-Argyro Tsioptsia & Eleni Zafeiriou & Dimitrios Niklis & Nikolaos Sariannidis & Constantin Zopounidis, 2022. "The Corporate Economic Performance of Environmentally Eligible Firms Nexus Climate Change: An Empirical Research in a Bayesian VAR Framework," Energies, MDPI, vol. 15(19), pages 1-16, October.
    9. Oksana Marinina & Anna Nechitailo & Gennady Stroykov & Anna Tsvetkova & Ekaterina Reshneva & Liudmila Turovskaya, 2023. "Technical and Economic Assessment of Energy Efficiency of Electrification of Hydrocarbon Production Facilities in Underdeveloped Areas," Sustainability, MDPI, vol. 15(12), pages 1-25, June.
    10. Agnieszka Izabela Baruk & Grzegorz Wesołowski, 2021. "The Effect of Using Social Media in the Modern Marketing Communication on the Shaping an External Employer’s Image," Energies, MDPI, vol. 14(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nekrasov, S., 2023. "Environmental management from the point of energy transition: The example of the Rybinsk reservoir," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 110-126.
    2. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    3. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    4. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).
    5. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    6. Dessi, F. & Ariccio, S. & Albers, T. & Alves, S. & Ludovico, N. & Bonaiuto, M., 2022. "Sustainable technology acceptability: Mapping technological, contextual, and social-psychological determinants of EU stakeholders’ biofuel acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    7. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    8. Kamila Słupińska & Marek Wieruszewski & Piotr Szczypa & Anna Kożuch & Krzysztof Adamowicz, 2022. "Public Perception of the Use of Woody Biomass for Energy Purposes in the Evaluation of Content and Information Management on the Internet," Energies, MDPI, vol. 15(19), pages 1-11, September.
    9. Tryfonas Pieri & Alexandros Nikitas & Athanasios Angelis-Dimakis, 2023. "Public Acceptance and Willingness to Pay for Carbon Capture and Utilisation Products," Clean Technol., MDPI, vol. 5(1), pages 1-15, March.
    10. Wang, Ke & Zhou, Zhongyun & Zhao, Pengfei & Yin, Zeguang & Su, Zhen & Sun, Ji, 2017. "Molten sodium-fluoride-promoted high-performance Li4SiO4-based CO2 sorbents at low CO2 concentrations," Applied Energy, Elsevier, vol. 204(C), pages 403-412.
    11. Chakrabortty, Sankha & Kumar, Ramesh & Nayak, Jayato & Jeon, Byong-Hun & Dargar, Shashi Kant & Tripathy, Suraj K. & Pal, Parimal & Ha, Geon-Soo & Kim, Kwang Ho & Jasiński, Michał, 2023. "Green synthesis of MeOH derivatives through in situ catalytic transformations of captured CO2 in a membrane integrated photo-microreactor system: A state-of-art review for carbon capture and utilizati," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    12. Rongrong Zhai & Hongtao Liu & Hao Wu & Hai Yu & Yongping Yang, 2018. "Analysis of Integration of MEA-Based CO 2 Capture and Solar Energy System for Coal-Based Power Plants Based on Thermo-Economic Structural Theory," Energies, MDPI, vol. 11(5), pages 1-30, May.
    13. Xu, Ming-Xin & Wu, Hai-Bo & Wu, Ya-Chang & Wang, Han-Xiao & Ouyang, Hao-Dong & Lu, Qiang, 2021. "Design and evaluation of a novel system for the flue gas compression and purification from the oxy-fuel combustion process," Applied Energy, Elsevier, vol. 285(C).
    14. Simon P. Philbin, 2020. "Critical Analysis and Evaluation of the Technology Pathways for Carbon Capture and Utilization," Clean Technol., MDPI, vol. 2(4), pages 1-21, December.
    15. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    16. Morgan, Joshua C. & Chinen, Anderson Soares & Anderson-Cook, Christine & Tong, Charles & Carroll, John & Saha, Chiranjib & Omell, Benjamin & Bhattacharyya, Debangsu & Matuszewski, Michael & Bhat, K. S, 2020. "Development of a framework for sequential Bayesian design of experiments: Application to a pilot-scale solvent-based CO2 capture process," Applied Energy, Elsevier, vol. 262(C).
    17. Ampomah, W. & Balch, R.S. & Cather, M. & Will, R. & Gunda, D. & Dai, Z. & Soltanian, M.R., 2017. "Optimum design of CO2 storage and oil recovery under geological uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 80-92.
    18. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    19. Hu, Xiayi (Eric) & Liu, Libin & Luo, Xiao & Xiao, Gongkui & Shiko, Elenica & Zhang, Rui & Fan, Xianfeng & Zhou, Yefeng & Liu, Yang & Zeng, Zhaogang & Li, Chao'en, 2020. "A review of N-functionalized solid adsorbents for post-combustion CO2 capture," Applied Energy, Elsevier, vol. 260(C).
    20. Yazan K. A. Migdadi & Ahmed A. Khalifa & Abdullah Al-Swidi & Abdulkarem I. Amhamed & Muftah H. El-Naas, 2022. "A Conceptual Framework of Customer Value Proposition of CCU-Formic Acid Product," Sustainability, MDPI, vol. 14(24), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1408-:d:510243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.