IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i15p5716-d881680.html
   My bibliography  Save this article

Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review

Author

Listed:
  • Nikolaos Koukouzas

    (Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute, 57001 Thermi, Greece)

  • Marina Christopoulou

    (Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute, 57001 Thermi, Greece
    Section of Earth Materials, Department of Geology, University of Patras, 26504 Patras, Greece)

  • Panagiota P. Giannakopoulou

    (Section of Earth Materials, Department of Geology, University of Patras, 26504 Patras, Greece)

  • Aikaterini Rogkala

    (Section of Earth Materials, Department of Geology, University of Patras, 26504 Patras, Greece)

  • Eleni Gianni

    (Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute, 57001 Thermi, Greece)

  • Christos Karkalis

    (Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute, 57001 Thermi, Greece)

  • Konstantina Pyrgaki

    (Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute, 57001 Thermi, Greece)

  • Pavlos Krassakis

    (Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute, 57001 Thermi, Greece)

  • Petros Koutsovitis

    (Section of Earth Materials, Department of Geology, University of Patras, 26504 Patras, Greece)

  • Dionisios Panagiotaras

    (Department of Environment, Ionian University, M. Minotou-Giannopoulou 26, Panagoula, 29100 Zakynthos, Greece)

  • Petros Petrounias

    (Centre for Research & Technology Hellas (CERTH), Chemical Process & Energy Resources Institute, 57001 Thermi, Greece
    Section of Earth Materials, Department of Geology, University of Patras, 26504 Patras, Greece)

Abstract

Carbon dioxide (CO 2 ) has reached a higher level of emissions in the last decades, and as it is widely known, CO 2 is responsible for numerous environmental problems, such as climate change. Thus, there is a great need for the application of CO 2 capture and storage, as well as of CO 2 utilization technologies (CCUS). This review article focuses on summarizing the current CCUS state-of-the-art methods used in Europe. Special emphasis has been given to mineralization methods/technologies, especially in basalts and sandstones, which are considered to be suitable for CO 2 mineralization. Furthermore, a questionnaire survey was also carried out in order to investigate how informed about CO 2 issues European citizens are, as well as whether their background is relative to their positive or negative opinion about the establishment of CCUS technologies in their countries. In addition, social acceptance by the community requires contact with citizens and stakeholders, as well as ensuring mutual trust through open communication and the opportunity to participate as early as possible in the development of actions and projects related to CO 2 capture and storage, at all appropriate levels of government internationally, as citizens need to understand the benefits from such new technologies, from the local to the international level.

Suggested Citation

  • Nikolaos Koukouzas & Marina Christopoulou & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Eleni Gianni & Christos Karkalis & Konstantina Pyrgaki & Pavlos Krassakis & Petros Koutsovitis & Dionisio, 2022. "Current CO 2 Capture and Storage Trends in Europe in a View of Social Knowledge and Acceptance. A Short Review," Energies, MDPI, vol. 15(15), pages 1-30, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5716-:d:881680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/15/5716/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/15/5716/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Petros Petrounias & Panagiota P. Giannakopoulou & Aikaterini Rogkala & Maria Kalpogiannaki & Petros Koutsovitis & Maria-Elli Damoulianou & Nikolaos Koukouzas, 2020. "Petrographic Characteristics of Sandstones as a Basis to Evaluate Their Suitability in Construction and Energy Storage Applications. A Case Study from Klepa Nafpaktias (Central Western Greece)," Energies, MDPI, vol. 13(5), pages 1-21, March.
    2. Lorraine Whitmarsh & Dimitrios Xenias & Christopher R. Jones, 2019. "Framing effects on public support for carbon capture and storage," Palgrave Communications, Palgrave Macmillan, vol. 5(1), pages 1-10, December.
    3. Kodama, Satoshi & Nishimoto, Taiki & Yamamoto, Naoki & Yogo, Katsunori & Yamada, Koichi, 2008. "Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution," Energy, Elsevier, vol. 33(5), pages 776-784.
    4. Bob van der Zwaan & Reyer Gerlagh, 2008. "The Economics of Geological CO2 Storage and Leakage," Working Papers 2008.10, Fondazione Eni Enrico Mattei.
    5. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    6. Tiskatine, R. & Eddemani, A. & Gourdo, L. & Abnay, B. & Ihlal, A. & Aharoune, A. & Bouirden, L., 2016. "Experimental evaluation of thermo-mechanical performances of candidate rocks for use in high temperature thermal storage," Applied Energy, Elsevier, vol. 171(C), pages 243-255.
    7. Bareschino, P. & Mancusi, E. & Urciuolo, M. & Paulillo, A. & Chirone, R. & Pepe, F., 2020. "Life cycle assessment and feasibility analysis of a combined chemical looping combustion and power-to-methane system for CO2 capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    8. Eloneva, Sanni & Said, Arshe & Fogelholm, Carl-Johan & Zevenhoven, Ron, 2012. "Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate," Applied Energy, Elsevier, vol. 90(1), pages 329-334.
    9. Arning, K. & Offermann-van Heek, J. & Linzenich, A. & Kaetelhoen, A. & Sternberg, A. & Bardow, A. & Ziefle, M., 2019. "Same or different? Insights on public perception and acceptance of carbon capture and storage or utilization in Germany," Energy Policy, Elsevier, vol. 125(C), pages 235-249.
    10. Offermann-van Heek, Julia & Arning, Katrin & Sternberg, André & Bardow, André & Ziefle, Martina, 2020. "Assessing public acceptance of the life cycle of CO2-based fuels: Does information make the difference?," Energy Policy, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beatrice Castellani, 2023. "Potential Pathway for Reliable Long-Term CO 2 Storage as Clathrate Hydrates in Marine Environments," Energies, MDPI, vol. 16(6), pages 1-13, March.
    2. Charli Sitinjak & Sitinjak Ebennezer & Józef Ober, 2023. "Exploring Public Attitudes and Acceptance of CCUS Technologies in JABODETABEK: A Cross-Sectional Study," Energies, MDPI, vol. 16(10), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Katja Witte, 2021. "Social Acceptance of Carbon Capture and Storage (CCS) from Industrial Applications," Sustainability, MDPI, vol. 13(21), pages 1-29, November.
    2. Said, Arshe & Mattila, Hannu-Petteri & Järvinen, Mika & Zevenhoven, Ron, 2013. "Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2," Applied Energy, Elsevier, vol. 112(C), pages 765-771.
    3. Jun-Hwan Bang & Seung-Woo Lee & Chiwan Jeon & Sangwon Park & Kyungsun Song & Whan Joo Jo & Soochun Chae, 2016. "Leaching of Metal Ions from Blast Furnace Slag by Using Aqua Regia for CO 2 Mineralization," Energies, MDPI, vol. 9(12), pages 1-13, November.
    4. Hosseini, Tahereh & Haque, Nawshad & Selomulya, Cordelia & Zhang, Lian, 2016. "Mineral carbonation of Victorian brown coal fly ash using regenerative ammonium chloride – Process simulation and techno-economic analysis," Applied Energy, Elsevier, vol. 175(C), pages 54-68.
    5. Danny Otto & Marit Sprenkeling & Ruben Peuchen & Åsta Dyrnes Nordø & Dimitrios Mendrinos & Spyridon Karytsas & Siri Veland & Olympia Polyzou & Martha Lien & Yngve Heggelund & Matthias Gross & Pim Piek, 2022. "On the Organisation of Translation—An Inter- and Transdisciplinary Approach to Developing Design Options for CO 2 Storage Monitoring Systems," Energies, MDPI, vol. 15(15), pages 1-22, August.
    6. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Natalia Czaplicka & Donata Konopacka-Łyskawa, 2020. "Utilization of Gaseous Carbon Dioxide and Industrial Ca-Rich Waste for Calcium Carbonate Precipitation: A Review," Energies, MDPI, vol. 13(23), pages 1-25, November.
    8. Naraharisetti, Pavan Kumar & Yeo, Tze Yuen & Bu, Jie, 2019. "New classification of CO2 mineralization processes and economic evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 220-233.
    9. Pianta, Silvia & Rinscheid, Adrian & Weber, Elke U., 2021. "Carbon Capture and Storage in the United States: Perceptions, preferences, and lessons for policy," Energy Policy, Elsevier, vol. 151(C).
    10. Jingjing Xie & Yujiao Xian & Guowei Jia, 2023. "An investigation into the public acceptance in China of carbon capture and storage (CCS) technology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    11. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    12. Pan, Shu-Yuan & Lorente Lafuente, Ana Maria & Chiang, Pen-Chi, 2016. "Engineering, environmental and economic performance evaluation of high-gravity carbonation process for carbon capture and utilization," Applied Energy, Elsevier, vol. 170(C), pages 269-277.
    13. Linzenich, Anika & Arning, Katrin & Ziefle, Martina, 2021. "Acceptance of energy technologies in context: Comparing laypeople's risk perceptions across eight infrastructure technologies in Germany," Energy Policy, Elsevier, vol. 152(C).
    14. Li, Wenjia & Hao, Yong & Wang, Hongsheng & Liu, Hao & Sui, Jun, 2017. "Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage," Applied Energy, Elsevier, vol. 206(C), pages 1523-1531.
    15. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    16. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    17. Dongdong Fang & Lihui Zhang & Linjiang Zou & Feng Duan, 2021. "Effect of leaching parameters on the composition of adsorbents derived from steel slag and their CO2 capture characteristics," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(5), pages 924-938, October.
    18. Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
    19. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    20. Narita, Daiju & Klepper, Gernot, 2015. "Economic incentives for carbon dioxide storage under uncertainty: A real options analysis," Kiel Working Papers 2002, Kiel Institute for the World Economy (IfW Kiel).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:15:p:5716-:d:881680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.