IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i24p8281-d698111.html
   My bibliography  Save this article

Deciding a Multicriteria Decision-Making (MCDM) Method to Prioritize Maintenance Work Orders of Hydroelectric Power Plants

Author

Listed:
  • Renan Favarão da Silva

    (Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo (USP), São Paulo 05508-900, Brazil)

  • Marjorie Maria Bellinello

    (Department of Mechanical and Maintenance Engineering, Federal University of Technology of Paraná (UTFPR), Guarapuava 85053-525, Brazil)

  • Gilberto Francisco Martha de Souza

    (Department of Mechatronics and Mechanical Systems Engineering, University of São Paulo (USP), São Paulo 05508-900, Brazil)

  • Sara Antomarioni

    (Department of Industrial Engineering and Mathematical Sciences, Marche Polytechnic University (UNIVPM), Via Brecce Bianche, 60131 Ancona, Italy)

  • Maurizio Bevilacqua

    (Department of Industrial Engineering and Mathematical Sciences, Marche Polytechnic University (UNIVPM), Via Brecce Bianche, 60131 Ancona, Italy)

  • Filippo Emanuele Ciarapica

    (Department of Industrial Engineering and Mathematical Sciences, Marche Polytechnic University (UNIVPM), Via Brecce Bianche, 60131 Ancona, Italy)

Abstract

The current global competitive scenario and the increase in complexity and automation of equipment and systems demand better results from maintenance management in organizations. As maintenance resources are limited, prioritizing maintenance activities is essential to allocate them properly and to meet maintenance management objectives. In the face of these challenges, multicriteria decision-making (MCDM) methods are commonly used in organizations to support decision-making. Nevertheless, selecting a suitable MCDM method for maintenance planning can be complicated given the diversity of methods and their strengths and weaknesses. In this context, this paper proposes a novel knowledge-based method for deciding a multicriteria decision-making (MCDM) method to prioritize maintenance work orders of hydroelectric plants. As the main novel contribution, it translates the intrinsic characteristics of the main MCDM methods into questions related to maintenance planning to guide the recommendation of a suitable MCDM method for organizations through a decision tree diagram. This approach was applied to a maintenance case study of a hydroelectric power plant in order to demonstrate its use and contribute to its understanding. These findings contribute to maintenance management in selecting an MCDM method aligned with the context of its maintenance planning for the prioritization of maintenance work orders.

Suggested Citation

  • Renan Favarão da Silva & Marjorie Maria Bellinello & Gilberto Francisco Martha de Souza & Sara Antomarioni & Maurizio Bevilacqua & Filippo Emanuele Ciarapica, 2021. "Deciding a Multicriteria Decision-Making (MCDM) Method to Prioritize Maintenance Work Orders of Hydroelectric Power Plants," Energies, MDPI, vol. 14(24), pages 1-22, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8281-:d:698111
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/24/8281/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/24/8281/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arthur H.A. Melani & Carlos A. Murad & Adherbal Caminada Netto & Gilberto F.M. Souza & Silvio I. Nabeta, 2019. "Maintenance Strategy Optimization of a Coal-Fired Power Plant Cooling Tower through Generalized Stochastic Petri Nets," Energies, MDPI, vol. 12(10), pages 1-28, May.
    2. Baumann, Manuel & Weil, Marcel & Peters, Jens F. & Chibeles-Martins, Nelson & Moniz, Antonio B., 2019. "A review of multi-criteria decision making approaches for evaluating energy storage systems for grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 516-534.
    3. Perry C. Y. Liu & Huai-Wei Lo & James J. H. Liou, 2020. "A Combination of DEMATEL and BWM-Based ANP Methods for Exploring the Green Building Rating System in Taiwan," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    4. Thomas L. Saaty & Luis G. Vargas, 2006. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, number 978-0-387-33987-0, September.
    5. Nazanin Vafaei & Rita A. Ribeiro & Luis M. Camarinha-Matos, 2018. "Data normalisation techniques in decision making: case study with TOPSIS method," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 10(1), pages 19-38.
    6. Durbach, Ian N. & Stewart, Theodor J., 2012. "Modeling uncertainty in multi-criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 223(1), pages 1-14.
    7. D Bouyssou, 1999. "Using DEA as a tool for MCDM: some remarks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(9), pages 974-978, September.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Chun-Chin Wei & Yung-Lung Cheng & Kuo-Liang Lee, 2019. "How to select suitable manufacturing information system outsourcing projects by using TOPSIS method," International Journal of Production Research, Taylor & Francis Journals, vol. 57(13), pages 4333-4350, July.
    10. Mohammad Ebrahim Banihabib & Farkhondeh-Sadat Hashemi-Madani & Ali Forghani, 2017. "Comparison of Compensatory and non-Compensatory Multi Criteria Decision Making Models in Water Resources Strategic Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(12), pages 3745-3759, September.
    11. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    12. Kheybari, Siamak & Rezaie, Fariba Mahdi & Farazmand, Hadis, 2020. "Analytic network process: An overview of applications," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    13. Sheng-Li Si & Xiao-Yue You & Hu-Chen Liu & Ping Zhang, 2018. "DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications," Mathematical Problems in Engineering, Hindawi, vol. 2018, pages 1-33, January.
    14. Thomas L. Saaty, 2006. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, chapter 0, pages 1-26, Springer.
    15. Sarkis, Joseph, 2000. "A comparative analysis of DEA as a discrete alternative multiple criteria decision tool," European Journal of Operational Research, Elsevier, vol. 123(3), pages 543-557, June.
    16. Haddad, Malik & Sanders, David, 2018. "Selection of discrete multiple criteria decision making methods in the presence of risk and uncertainty," Operations Research Perspectives, Elsevier, vol. 5(C), pages 357-370.
    17. Thomas L. Saaty & Luis G. Vargas, 2012. "Models, Methods, Concepts & Applications of the Analytic Hierarchy Process," International Series in Operations Research and Management Science, Springer, edition 2, number 978-1-4614-3597-6, September.
    18. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    19. Guitouni, Adel & Martel, Jean-Marc, 1998. "Tentative guidelines to help choosing an appropriate MCDA method," European Journal of Operational Research, Elsevier, vol. 109(2), pages 501-521, September.
    20. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    2. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
    3. Dyckhoff, Harald & Souren, Rainer, 2022. "Integrating multiple criteria decision analysis and production theory for performance evaluation: Framework and review," European Journal of Operational Research, Elsevier, vol. 297(3), pages 795-816.
    4. Haddad, M. & Sanders, D. & Tewkesbury, G., 2020. "Selecting a discrete multiple criteria decision making method for Boeing to rank four global market regions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 1-15.
    5. Starr, Morgan & Joshi, Omkar & Will, Rodney E. & Zou, Chris B., 2019. "Perceptions regarding active management of the Cross-timbers forest resources of Oklahoma, Texas, and Kansas: A SWOT-ANP analysis," Land Use Policy, Elsevier, vol. 81(C), pages 523-530.
    6. Theißen, Sebastian & Spinler, Stefan, 2014. "Strategic analysis of manufacturer-supplier partnerships: An ANP model for collaborative CO2 reduction management," European Journal of Operational Research, Elsevier, vol. 233(2), pages 383-397.
    7. Baudry, Gino & Macharis, Cathy & Vallée, Thomas, 2018. "Range-based Multi-Actor Multi-Criteria Analysis: A combined method of Multi-Actor Multi-Criteria Analysis and Monte Carlo simulation to support participatory decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 264(1), pages 257-269.
    8. J. Claver & A. García-Domínguez & M. A. Sebastián, 2018. "Decision-Making Methodologies for Reuse of Industrial Assets," Complexity, Hindawi, vol. 2018, pages 1-17, February.
    9. Behzadian, Majid & Kazemzadeh, R.B. & Albadvi, A. & Aghdasi, M., 2010. "PROMETHEE: A comprehensive literature review on methodologies and applications," European Journal of Operational Research, Elsevier, vol. 200(1), pages 198-215, January.
    10. Akbari, Negar & Irawan, Chandra A. & Jones, Dylan F. & Menachof, David, 2017. "A multi-criteria port suitability assessment for developments in the offshore wind industry," Renewable Energy, Elsevier, vol. 102(PA), pages 118-133.
    11. Abbas Mardani & Ahmad Jusoh & Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Zainab Khalifah, 2015. "Sustainable and Renewable Energy: An Overview of the Application of Multiple Criteria Decision Making Techniques and Approaches," Sustainability, MDPI, vol. 7(10), pages 1-38, October.
    12. Lin, Sheng-Hau & Zhang, Hejie & Li, Jia-Hsuan & Ye, Cheng-Zhou & Hsieh, Jing-Chzi, 2022. "Evaluating smart office buildings from a sustainability perspective: A model of hybrid multi-attribute decision-making," Technology in Society, Elsevier, vol. 68(C).
    13. Santos, Sérgio P. & Belton, Valerie & Howick, Susan & Pilkington, Martin, 2018. "Measuring organisational performance using a mix of OR methods," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 18-30.
    14. Jun Dong & Dongran Liu & Dongxue Wang & Qi Zhang, 2019. "Identification of Key Influencing Factors of Sustainable Development for Traditional Power Generation Groups in a Market by Applying an Extended MCDM Model," Sustainability, MDPI, vol. 11(6), pages 1-30, March.
    15. Na Li & Rudi Hakvoort & Zofia Lukszo, 2021. "Cost Allocation in Integrated Community Energy Systems—Social Acceptance," Sustainability, MDPI, vol. 13(17), pages 1-24, September.
    16. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    17. Baris Yilmaz & Mehmet Yurdusev & Nilgun Harmancioglu, 2009. "The Assessment of Irrigation Efficiency in Buyuk Menderes Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1081-1095, April.
    18. Chiou, Yu-Chiun & Lan, Lawrence W. & Yen, Barbara T.H., 2012. "Route-based data envelopment analysis models," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 415-425.
    19. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    20. Ali Aghazadeh Ardebili & Elio Padoano & Antonella Longo & Antonio Ficarella, 2022. "The Risky-Opportunity Analysis Method (ROAM) to Support Risk-Based Decisions in a Case-Study of Critical Infrastructure Digitization," Risks, MDPI, vol. 10(3), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:24:p:8281-:d:698111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.