IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i3p48-d756850.html
   My bibliography  Save this article

The Risky-Opportunity Analysis Method (ROAM) to Support Risk-Based Decisions in a Case-Study of Critical Infrastructure Digitization

Author

Listed:
  • Ali Aghazadeh Ardebili

    (SyDa Lab, CRISR Center, Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Elio Padoano

    (Department of Engineering and Architecture, University of Trieste, 34100 Trieste, Italy)

  • Antonella Longo

    (SyDa Lab, CRISR Center, Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

  • Antonio Ficarella

    (SyDa Lab, CRISR Center, Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy)

Abstract

Socio-ecologic, socio-economic, and socio-technical transitions are opportunities that require fundamental changes in the system. These will encounter matters associated with security, service adoption by end-users, infrastructure and availability. The purpose of this study is to examine and overcome the risks to take advantage of opportunities through the novel Risky-Opportunity Analysis Method (ROAM). A novel quantitative method is designed to determine when, after making some changes, the risks become acceptable so that the opportunity does not deviate from the objectives. The approach provided a quantitative evaluation of the possible changes in parallel with digitization, towards providing a green Service Supply Chain (SSC). The result of ROAM shows that the most cost-effective change to increase the resilience of the system is a solution (SMS) which is different from that identified by a TOPSIS multi-criteria method. Real-word decisions in change management should tackle the complexity of systems and uncertainty of events during and after transition through a careful analysis of the alternatives. A case-study was carried out to evaluate the alternatives of an ancillary service in the Payment Service Providers (PSP). The comparison of the ROAM results with the traditional TOPSIS of the case-study unveils the priority of the ROAM in practice when the alternatives are Risky-Opportunities. The existing risk assessment tools do not take advantage of risky opportunities. To this aim, the current article introduces the term Risky-Opportunity, and two indexes—Stress and Strain—of the alternatives that are designed to be employed in the new quantitative ROAM approach.

Suggested Citation

  • Ali Aghazadeh Ardebili & Elio Padoano & Antonella Longo & Antonio Ficarella, 2022. "The Risky-Opportunity Analysis Method (ROAM) to Support Risk-Based Decisions in a Case-Study of Critical Infrastructure Digitization," Risks, MDPI, vol. 10(3), pages 1-22, February.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:3:p:48-:d:756850
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/3/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/3/48/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas L. Saaty, 2006. "The Analytic Network Process," International Series in Operations Research & Management Science, in: Decision Making with the Analytic Network Process, chapter 0, pages 1-26, Springer.
    2. Mohammad Khalilzadeh & Laleh Katoueizadeh & Edmundas Kazimieras Zavadskas, 2020. "Risk identification and prioritization in banking projects of payment service provider companies: an empirical study," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-27, December.
    3. Nick Pidgeon, 2014. "Complexity, uncertainty and future risks," Journal of Risk Research, Taylor & Francis Journals, vol. 17(10), pages 1269-1271, November.
    4. Darinka Asenova & William Stein & Alasdair Marshall, 2011. "An innovative approach to risk and quality assessment in the regulation of care services in Scotland," Journal of Risk Research, Taylor & Francis Journals, vol. 14(7), pages 859-879, August.
    5. Ali Aghazadeh Ardebili & Elio Padoano & Najmeh Rahmani, 2020. "Waste Reduction for Green Service Supply Chain—the Case Study of a Payment Service Provider in Iran," Sustainability, MDPI, vol. 12(5), pages 1-22, February.
    6. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    7. Stephen Ward & Chris Chapman, 2008. "Stakeholders and uncertainty management in projects," Construction Management and Economics, Taylor & Francis Journals, vol. 26(6), pages 563-577.
    8. Thomas L. Saaty & Luis G. Vargas, 2006. "Decision Making with the Analytic Network Process," International Series in Operations Research and Management Science, Springer, number 978-0-387-33987-0, September.
    9. Evsey D. Domar & Richard A. Musgrave, 1944. "Proportional Income Taxation and Risk-Taking," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 58(3), pages 388-422.
    10. Joachim Jean-Jules & Ricardo Vicente, 2021. "Rethinking the implementation of enterprise risk management (ERM) as a socio-technical challenge," Journal of Risk Research, Taylor & Francis Journals, vol. 24(2), pages 247-266, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Zema & Adam Sulich & Sebastian Grzesiak, 2022. "Charging Stations and Electromobility Development: A Cross-Country Comparative Analysis," Energies, MDPI, vol. 16(1), pages 1-20, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildirim, Ercan & AR, Ilker Murat & Dabić, Marina & Baki, Birdogan & Peker, Iskender, 2022. "A multi-stage decision making model for determining a suitable innovation structure using an open innovation approach," Journal of Business Research, Elsevier, vol. 147(C), pages 379-391.
    2. J. Claver & A. García-Domínguez & M. A. Sebastián, 2018. "Decision-Making Methodologies for Reuse of Industrial Assets," Complexity, Hindawi, vol. 2018, pages 1-17, February.
    3. Ester Guijarro & Cristina Santadreu-Mascarell & Beatriz Blasco-Gallego & Lourdes Canós-Darós & Eugenia Babiloni, 2021. "On the Identification of the Key Factors for a Successful Use of Twitter as a Medium from a Social Marketing Perspective," Sustainability, MDPI, vol. 13(12), pages 1-15, June.
    4. Babak Daneshvar Rouyendegh & Asil Oztekin & Joseph Ekong & Ali Dag, 2019. "Measuring the efficiency of hospitals: a fully-ranking DEA–FAHP approach," Annals of Operations Research, Springer, vol. 278(1), pages 361-378, July.
    5. Baffoe, Gideon, 2019. "Exploring the utility of Analytic Hierarchy Process (AHP) in ranking livelihood activities for effective and sustainable rural development interventions in developing countries," Evaluation and Program Planning, Elsevier, vol. 72(C), pages 197-204.
    6. De Ambroggi, Massimiliano & Trucco, Paolo, 2011. "Modelling and assessment of dependent performance shaping factors through Analytic Network Process," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 849-860.
    7. Ravi Kumar Gedela & K. Krishna Mohan & V. Kamakshi Prasad, 2018. "Application of BOCR models in service oriented architecture (SOA): study on model validation through quantification for QoS considerations," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1346-1354, December.
    8. S. Toosi & J. Samani, 2012. "Evaluating Water Transfer Projects Using Analytic Network Process (ANP)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(7), pages 1999-2014, May.
    9. Babak Daneshvar Rouyendegh & Kazim Topuz & Ali Dag & Asil Oztekin, 2019. "An AHP-IFT Integrated Model for Performance Evaluation of E-Commerce Web Sites," Information Systems Frontiers, Springer, vol. 21(6), pages 1345-1355, December.
    10. Kuliš Marija Šiško, 2020. "Selection of Project Managers: An Overview," Business Systems Research, Sciendo, vol. 11(2), pages 99-116, October.
    11. Wolfgang Ossadnik & Stefanie Schinke & Ralf H. Kaspar, 2016. "Group Aggregation Techniques for Analytic Hierarchy Process and Analytic Network Process: A Comparative Analysis," Group Decision and Negotiation, Springer, vol. 25(2), pages 421-457, March.
    12. S. Razavi Toosi & J. Samani, 2014. "A New Integrated MADM Technique Combined with ANP, FTOPSIS and Fuzzy Max-Min Set Method for Evaluating Water Transfer Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4257-4272, September.
    13. José María Codosero Rodas & José Cabezas Fernández & José Manuel Naranjo Gómez & Rui Alexandre Castanho, 2019. "Risk Premium Assessment for the Sustainable Valuation of Urban Development Land: Evidence from Spain," Sustainability, MDPI, vol. 11(15), pages 1-21, August.
    14. Theißen, Sebastian & Spinler, Stefan, 2014. "Strategic analysis of manufacturer-supplier partnerships: An ANP model for collaborative CO2 reduction management," European Journal of Operational Research, Elsevier, vol. 233(2), pages 383-397.
    15. Benevenuto, Rodolfo & Caulfield, Brian, 2020. "Examining transport needs in the global south using a screening framework," Journal of Transport Geography, Elsevier, vol. 88(C).
    16. Jordi Gallego-Ayala & Dinis Juízo, 2014. "Integrating Stakeholders’ Preferences into Water Resources Management Planning in the Incomati River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(2), pages 527-540, January.
    17. Mahdi Bitarafan & Kambod Amini Hosseini & Sarfaraz Hashemkhani Zolfani, 2023. "Evaluating Natural Hazards in Cities Using a Novel Integrated MCDM Approach (Case Study: Tehran City)," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    18. Keon Chul Park & Dong-Hee Shin, 2017. "Security assessment framework for IoT service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 64(1), pages 193-209, January.
    19. Ilyas AKHISAR, 2014. "Performance Ranking Of Turkish Insurance Companies: The Ahp Application," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 8(1), pages 27-34, November.
    20. Mohammad Khalilzadeh & Laleh Katoueizadeh & Edmundas Kazimieras Zavadskas, 2020. "Risk identification and prioritization in banking projects of payment service provider companies: an empirical study," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-27, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:3:p:48-:d:756850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.