IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i23p8060-d693291.html
   My bibliography  Save this article

Empirical Estimation of the Energy Impacts of Projects Installed through Residential Property Assessed Clean Energy Financing Programs in California

Author

Listed:
  • Jeff Deason

    (Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

  • Sean Murphy

    (Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

  • Charles A. Goldman

    (Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

Abstract

We examine the energy use impacts of energy efficiency and solar PV projects financed by residential property assessed clean energy (R-PACE) programs in California. We leverage household-level interval meter data to apply normalized metered energy consumption (NMEC) methods at significant scale—more than 25,000 electric meters and more than 15,000 gas meters. We develop a comparison group to account for non-project-related changes in usage. The projects include homes that replaced existing HVAC equipment with higher-efficiency units and homes that installed central heating or air conditioning equipment for the first time. We have limited information on pre-project household equipment stock so we develop a method to infer new installations. We find that projects that installed energy efficiency technologies reduce electricity consumption by approximately 3% and gas consumption by approximately 3.5% on average. When we remove homes that installed new cooling and heating equipment for the first time, savings rise to approximately 5% for electricity and approximately 6% for gas. Given the California climate and the results of an existing study of similar California projects, these results are in line with expectations. Solar PV projects produce electricity that offsets approximately 69% of household electricity consumption on average. We estimate that California R-PACE projects installed through the end of 2019 produce annual reductions in grid-tied electricity consumption of 506 GWh (equivalent to the electricity consumption of approximately 74,000 California households) and gas consumption reductions of 2 million therms (equivalent to the gas consumption of approximately 4700 California households) in a typical weather year.

Suggested Citation

  • Jeff Deason & Sean Murphy & Charles A. Goldman, 2021. "Empirical Estimation of the Energy Impacts of Projects Installed through Residential Property Assessed Clean Energy Financing Programs in California," Energies, MDPI, vol. 14(23), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8060-:d:693291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/23/8060/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/23/8060/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirkpatrick, A. Justin & Bennear, Lori S., 2014. "Promoting clean energy investment: An empirical analysis of property assessed clean energy," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 357-375.
    2. Ameli, Nadia & Pisu, Mauro & Kammen, Daniel M., 2017. "Can the US keep the PACE? A natural experiment in accelerating the growth of solar electricity," Applied Energy, Elsevier, vol. 191(C), pages 163-169.
    3. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    4. Rose, Adam & Wei, Dan, 2020. "Impacts of the Property Assessed Clean Energy (PACE) program on the economy of California," Energy Policy, Elsevier, vol. 137(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruth Winecoff & Michelle Graff, 2020. "Innovation in Financing Energy‐Efficient and Renewable Energy Upgrades: An Evaluation of Property Assessed Clean Energy for California Residences," Social Science Quarterly, Southwestern Social Science Association, vol. 101(7), pages 2555-2573, December.
    2. Kircher, Kevin J. & Zhang, K. Max, 2021. "Heat purchase agreements could lower barriers to heat pump adoption," Applied Energy, Elsevier, vol. 286(C).
    3. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    4. Martin, Ralf, 2009. "Why is the US so energy intensive? Evidence from US multinationals in the UK," LSE Research Online Documents on Economics 28703, London School of Economics and Political Science, LSE Library.
    5. Arlan Brucal & Michael Roberts, 2015. "Can Energy Efficiency Standards Reduce Prices and Improve Quality? Evidence from the US Clothes Washer Market," Working Papers 2015-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. DeCanio, Stephen J. & Watkins, William E., 1998. "Information processing and organizational structure," Journal of Economic Behavior & Organization, Elsevier, vol. 36(3), pages 275-294, August.
    7. AZOMAHOU, Théophile & BOUCEKKINE, Raouf & NGUYEN-VAN, Phu, 2009. "Promoting clean technologies under imperfect competition," LIDAM Discussion Papers CORE 2009011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Stavins, Robert & Jaffe, Adam & Newell, Richard, 2000. "Technological Change and the Environment," Working Paper Series rwp00-002, Harvard University, John F. Kennedy School of Government.
    9. Marek Vochozka & Veronika Machová & Eliška Sedmíková, 2021. "Fixing a payout ratio by dividend policies: a case of the utility sector," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 9(2), pages 416-432, December.
    10. Jakob Lehr, 2023. "Import Competition and Firm-Level CO2 Emissions: Evidence from the German Manufacturing Industry," CRC TR 224 Discussion Paper Series crctr224_2023_488, University of Bonn and University of Mannheim, Germany.
    11. Sallee, James M. & West, Sarah E. & Fan, Wei, 2016. "Do consumers recognize the value of fuel economy? Evidence from used car prices and gasoline price fluctuations," Journal of Public Economics, Elsevier, vol. 135(C), pages 61-73.
    12. Adam Michael Bauer & Cristian Proistosescu & Gernot Wagner, 2023. "Carbon Dioxide as a Risky Asset," CESifo Working Paper Series 10278, CESifo.
    13. Zhang, Li & Wu, Jing & Liu, Hongyu, 2018. "Policies to enhance the drivers of green housing development in China," Energy Policy, Elsevier, vol. 121(C), pages 225-235.
    14. Sandrine Mathy & Jean-Charles Hourcade & Christophe de Gouvello, 2001. "Clean development mechanism: leverage for development?," Climate Policy, Taylor & Francis Journals, vol. 1(2), pages 251-268, June.
    15. Lin, Tyrone T. & Huang, Shio-Ling, 2011. "Application of the modified Tobin's q to an uncertain energy-saving project with the real options concept," Energy Policy, Elsevier, vol. 39(1), pages 408-420, January.
    16. Djiby Racine Thiam & Ariel Dinar & Hebert Ntuli, 2021. "Promotion of residential water conservation measures in South Africa: the role of water-saving equipment," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 173-210, January.
    17. Manel Kamoun & Ines Abdelkafi & Abdelfetah Ghorbel, 2019. "The Impact of Renewable Energy on Sustainable Growth: Evidence from a Panel of OECD Countries," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 221-237, March.
    18. Maribu, Karl Magnus & Firestone, Ryan M. & Marnay, Chris & Siddiqui, Afzal S., 2007. "Distributed energy resources market diffusion model," Energy Policy, Elsevier, vol. 35(9), pages 4471-4484, September.
    19. Charlier, Dorothée, 2015. "Energy efficiency investments in the context of split incentives among French households," Energy Policy, Elsevier, vol. 87(C), pages 465-479.
    20. Jaeger, William K. & Egelkraut, Thorsten M., 2011. "Biofuel economics in a setting of multiple objectives and unintended consequences," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4320-4333.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:8060-:d:693291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.