IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7423-d674604.html
   My bibliography  Save this article

Eco-Friendly and Economical Solar Heater Design Using Internal Structure and Phase Change Materials

Author

Listed:
  • Jihu Lee

    (Chungdae-ro 1, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea)

  • Sung-Hun Son

    (Chungdae-ro 1, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea)

  • Kibum Kim

    (Chungdae-ro 1, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea)

Abstract

Indoor heating systems currently used are highly dependent on fossil fuels; hence, it is urgent to develop a new heating system to achieve carbon zero-emission. A solar air heater is eco-friendly because it generates nearly zero greenhouse gases. In this study, a parametric study was conducted for optimizing solar air heater design applicable to indoor heating. Installing the internal structure in the solar heater changes the interior flow characteristic, resulting in the air temperature increased by about 14.2 K on average compared to the heater without the internal structure. An additional case study was carried out to optimize the ideal quantity of phase change materials (PCM) in terms of mass fraction and heat capacity for various operating conditions. An excessive amount of PCM (e.g., 66% of the storage space filled with PCM) deteriorates the performance of the air heater unless the entire PCM could be melted during the daytime. After heating, the air temperature was maintained the longest when only 33% of the internal space was filled with PCM. The solar air heater can fully replace or partly assist a conventional heater for indoor heating, and it could reduce approximately 0.6 tCO 2 per year.

Suggested Citation

  • Jihu Lee & Sung-Hun Son & Kibum Kim, 2021. "Eco-Friendly and Economical Solar Heater Design Using Internal Structure and Phase Change Materials," Energies, MDPI, vol. 14(21), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7423-:d:674604
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zeppini, Paolo & van den Bergh, Jeroen C.J.M., 2020. "Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model," Energy Policy, Elsevier, vol. 136(C).
    2. Jouybari, Nima Fallah & Lundström, T. Staffan, 2020. "Performance improvement of a solar air heater by covering the absorber plate with a thin porous material," Energy, Elsevier, vol. 190(C).
    3. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    4. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    5. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    6. Ahmadi, Gholamreza & Toghraie, Davood & Akbari, Omid Ali, 2017. "Solar parallel feed water heating repowering of a steam power plant: A case study in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 474-485.
    7. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    8. Kim, Ki-bum & Choi, Kyung-wook & Kim, Young-jin & Lee, Ki-hyung & Lee, Kwan-soo, 2010. "Feasibility study on a novel cooling technique using a phase change material in an automotive engine," Energy, Elsevier, vol. 35(1), pages 478-484.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    2. Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Aytaç, İpek & Çiftçi, Erdem & Variyenli, Halil İbrahim, 2022. "Energy and exergy analysis of a vertical solar air heater with nano-enhanced absorber coating and perforated baffles," Renewable Energy, Elsevier, vol. 187(C), pages 586-602.
    3. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    4. Farhan, Ammar A. & Issam M.Ali, Aljubury & Ahmed, Hamdi E., 2021. "Energetic and exergetic efficiency analysis of a v-corrugated solar air heater integrated with twisted tape inserts," Renewable Energy, Elsevier, vol. 169(C), pages 1373-1385.
    5. Tandel, Hiren U. & Modi, Kalpesh V., 2022. "Experimental assessment of double-pass solar air heater by incorporating perforated baffles and solar water heating system," Renewable Energy, Elsevier, vol. 183(C), pages 385-405.
    6. Dhiman, Prashant & Thakur, N.S. & Chauhan, S.R., 2012. "Thermal and thermohydraulic performance of counter and parallel flow packed bed solar air heaters," Renewable Energy, Elsevier, vol. 46(C), pages 259-268.
    7. Lazaros Aresti & Paul Christodoulides & Gregoris P. Panayiotou & Georgios Florides, 2020. "The Potential of Utilizing Buildings’ Foundations as Thermal Energy Storage (TES) Units from Solar Plate Collectors," Energies, MDPI, vol. 13(11), pages 1-14, May.
    8. Alva, Guruprasad & Huang, Xiang & Liu, Lingkun & Fang, Guiyin, 2017. "Synthesis and characterization of microencapsulated myristic acid–palmitic acid eutectic mixture as phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 203(C), pages 677-685.
    9. Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
    10. Guo, Junfei & Liu, Zhan & Du, Zhao & Yu, Jiabang & Yang, Xiaohu & Yan, Jinyue, 2021. "Effect of fin-metal foam structure on thermal energy storage: An experimental study," Renewable Energy, Elsevier, vol. 172(C), pages 57-70.
    11. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    12. Hu, Nan & Li, Zi-Rui & Xu, Zhe-Wen & Fan, Li-Wu, 2022. "Rapid charging for latent heat thermal energy storage: A state-of-the-art review of close-contact melting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    13. Kannan, Nadarajah & Vakeesan, Divagar, 2016. "Solar energy for future world: - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1092-1105.
    14. Bahrami, Mehrdad & Akbari, Mohammad & Bagherzadeh, Seyed Amin & Karimipour, Arash & Afrand, Masoud & Goodarzi, Marjan, 2019. "Develop 24 dissimilar ANNs by suitable architectures & training algorithms via sensitivity analysis to better statistical presentation: Measure MSEs between targets & ANN for Fe–CuO/Eg–Water nanofluid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 159-168.
    15. Jeder, Khawla & Bouhamed, Ayda & Nouri, Hanen & Abdelmoula, Najmeddine & Jöhrmann, Nathanael & Wunderle, Bernhard & Khemakhem, Hamadi & Kanoun, Olfa, 2022. "Enhancement of the performance of flexible lead-free nanogenerators by doping in BaTiO3 nanoparticles," Energy, Elsevier, vol. 261(PB).
    16. Muhammad Suleman Malik & Naveed Iftikhar & Abdul Wadood & Muhammad Omer Khan & Muhammad Usman Asghar & Shahbaz Khan & Tahir Khurshaid & Ki-Chai Kim & Zabdur Rehman & S. Tauqeer ul Islam Rizvi, 2020. "Design and Fabrication of Solar Thermal Energy Storage System Using Potash Alum as a PCM," Energies, MDPI, vol. 13(23), pages 1-16, November.
    17. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    19. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    20. Maurya, Om Kapoor & Ekka, Jasinta Poonam & Kumar, Dhananjay & Dewangan, Disha & Singh, Adarsh, 2023. "Experimental and numerical methods for the performance analysis of a tubular three-pass solar air heater," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7423-:d:674604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.