IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7307-d671781.html
   My bibliography  Save this article

Economic Analysis and Modelling of Rooftop Photovoltaic Systems in Spain for Industrial Self-Consumption

Author

Listed:
  • Álvaro Rodríguez-Martinez

    (Department of Industrial Organization, Business Administration and Statistics, E.T.S. Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
    Department of Business Development, ib vogt GmbH, 10587 Berlin, Germany)

  • Carlos Rodríguez-Monroy

    (Department of Industrial Organization, Business Administration and Statistics, E.T.S. Ingenieros Industriales, Universidad Politécnica de Madrid (UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain)

Abstract

This article has been developed to assess the economic feasibility of a rooftop photovoltaic installation of industrial self-consumption. Numerical models that enable an interested person to obtain the main expected parameters will be generated, with those models being the article’s main contribution to the field. To do this, a calculation methodology will be developed through which the reader, knowing the location of the facility and dimensions of the roof, will be able to calculate the maximum installable power, the main parameters related to production, the cost of the installation, and the LCOE of the plant. The use of actual costs will be facilitated in case they are known. Still, it will remain possible to apply the major equipment costs (modules, inverter, and structure) considered throughout the article. This developed calculation methodology will also allow a quick comparison of the forecasts of production, CAPEX, and LCOE of plants designed with different inclinations and different types of modules. Consequently, it will be especially useful in decision-making before developing the plant’s basic engineering. Moreover, the calculations used for modeling the LCOE will be analyzed in depth. This analysis will allow evaluating how the different technical variables affect the profitability of a photovoltaic installation, such as the selected tilt, the location, the module’s technology, or the available area.

Suggested Citation

  • Álvaro Rodríguez-Martinez & Carlos Rodríguez-Monroy, 2021. "Economic Analysis and Modelling of Rooftop Photovoltaic Systems in Spain for Industrial Self-Consumption," Energies, MDPI, vol. 14(21), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7307-:d:671781
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7307/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7307/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Talavera, D.L. & Muñoz-Rodriguez, F.J. & Jimenez-Castillo, G. & Rus-Casas, C., 2019. "A new approach to sizing the photovoltaic generator in self-consumption systems based on cost–competitiveness, maximizing direct self-consumption," Renewable Energy, Elsevier, vol. 130(C), pages 1021-1035.
    2. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    3. Iflah Javeed & Rahmat Khezri & Amin Mahmoudi & Amirmehdi Yazdani & G. M. Shafiullah, 2021. "Optimal Sizing of Rooftop PV and Battery Storage for Grid-Connected Houses Considering Flat and Time-of-Use Electricity Rates," Energies, MDPI, vol. 14(12), pages 1-19, June.
    4. Hassan Gholami & Harald Nils Røstvik, 2021. "Levelised Cost of Electricity (LCOE) of Building Integrated Photovoltaics (BIPV) in Europe, Rational Feed-In Tariffs and Subsidies," Energies, MDPI, vol. 14(9), pages 1-15, April.
    5. Patrick Gregory B. Jara & Michael T. Castro & Eugene A. Esparcia & Joey D. Ocon, 2020. "Quantifying the Techno-Economic Potential of Grid-Tied Rooftop Solar Photovoltaics in the Philippine Industrial Sector," Energies, MDPI, vol. 13(19), pages 1-20, September.
    6. Mühleisen, W. & Hirschl, C. & Brantegger, G. & Neumaier, L. & Spielberger, M. & Sonnleitner, H. & Kubicek, B. & Ujvari, G. & Ebner, R. & Schwark, M. & Eder, G.C. & Voronko, Y. & Knöbl, K. & Stoicescu,, 2019. "Scientific and economic comparison of outdoor characterisation methods for photovoltaic power plants," Renewable Energy, Elsevier, vol. 134(C), pages 321-329.
    7. Martinopoulos, Georgios, 2020. "Are rooftop photovoltaic systems a sustainable solution for Europe? A life cycle impact assessment and cost analysis," Applied Energy, Elsevier, vol. 257(C).
    8. Piotr Żuk & Paweł Żuk, 2021. "Increasing Energy Prices as a Stimulus for Entrepreneurship in Renewable Energies: Ownership Structure, Company Size and Energy Policy in Companies in Poland," Energies, MDPI, vol. 14(18), pages 1-19, September.
    9. Diana Bernasconi & Giorgio Guariso, 2021. "Rooftop PV: Potential and Impacts in a Complex Territory," Energies, MDPI, vol. 14(12), pages 1-17, June.
    10. Luigi Aldieri & Cristian Barra & Nazzareno Ruggiero & Concetto Paolo Vinci, 2021. "Green Energies, Employment, and Institutional Quality: Some Evidence for the OECD," Sustainability, MDPI, vol. 13(6), pages 1-21, March.
    11. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    12. Wang, Derek D. & Sueyoshi, Toshiyuki, 2017. "Assessment of large commercial rooftop photovoltaic system installations: Evidence from California," Applied Energy, Elsevier, vol. 188(C), pages 45-55.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgiou, Giorgos S. & Rouvas, Constantinos & Nathanael, Demetris, 2022. "Enhancing expansion of rooftop PV systems through Mixed Integer Linear Programming and Public Tender Procedures," Renewable Energy, Elsevier, vol. 187(C), pages 347-361.
    2. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    3. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    4. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    5. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "A Financial Evaluation of a Multiple Inclination, Rooftop-Mounted, Photovoltaic System Where Structured Tariffs Apply: A Case Study of a South African Shopping Centre," Energies, MDPI, vol. 14(6), pages 1-26, March.
    6. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    8. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    9. Kukkikatte Ramamurthy Rao, Harshadeep & Gemechu, Eskinder & Thakur, Ujwal & Shankar, Karthik & Kumar, Amit, 2021. "Techno-economic assessment of titanium dioxide nanorod-based perovskite solar cells: From lab-scale to large-scale manufacturing," Applied Energy, Elsevier, vol. 298(C).
    10. Wang, Derek D. & Sueyoshi, Toshiyuki, 2018. "Climate change mitigation targets set by global firms: Overview and implications for renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 386-398.
    11. Zhang, Yijie & Ma, Tao & Elia Campana, Pietro & Yamaguchi, Yohei & Dai, Yanjun, 2020. "A techno-economic sizing method for grid-connected household photovoltaic battery systems," Applied Energy, Elsevier, vol. 269(C).
    12. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    13. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    14. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    15. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).
    16. Samuel Amo Awuku & Firdaus Muhammad-Sukki & Nazmi Sellami, 2022. "Building Integrated Photovoltaics—The Journey So Far and Future," Energies, MDPI, vol. 15(5), pages 1-5, February.
    17. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    18. Jouttijärvi, Sami & Lobaccaro, Gabriele & Kamppinen, Aleksi & Miettunen, Kati, 2022. "Benefits of bifacial solar cells combined with low voltage power grids at high latitudes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Nima Monghasemi & Amir Vadiee & Konstantinos Kyprianidis & Elaheh Jalilzadehazhari, 2023. "Rank-Based Assessment of Grid-Connected Rooftop Solar Panel Deployments Considering Scenarios for a Postponed Installation," Energies, MDPI, vol. 16(21), pages 1-16, October.
    20. Mirza, Adeel Feroz & Mansoor, Majad & Zhan, Keyu & Ling, Qiang, 2021. "High-efficiency swarm intelligent maximum power point tracking control techniques for varying temperature and irradiance," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7307-:d:671781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.