IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p6962-d662845.html
   My bibliography  Save this article

OPF of Modern Power Systems Comprising Renewable Energy Sources Using Improved CHGS Optimization Algorithm

Author

Listed:
  • Mohamed A. M. Shaheen

    (Electrical Engineering Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Hany M. Hasanien

    (Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt)

  • Rania A. Turky

    (Electrical Engineering Department, Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt)

  • Martin Ćalasan

    (Faculty of Electrical Engineering, University of Montenegro, Dzordza Vasingtona, 81000 Podgorica, Montenegro)

  • Ahmed F. Zobaa

    (Electronic and Electrical Engineering Department, Brunel University London, Uxbridge UB83 PH, UK)

  • Shady H. E. Abdel Aleem

    (Electrical Engineering Department, Valley Higher Institute of Engineering and Technology, Science Valley Academy, Qalyubia 44971, Egypt)

Abstract

This article introduces an application of the recently developed hunger games search (HGS) optimization algorithm. The HGS is combined with chaotic maps to propose a new Chaotic Hunger Games search (CHGS). It is applied to solve the optimal power flow (OPF) problem. The OPF is solved to minimize the generation costs while satisfying the systems’ constraints. Moreover, the article presents optimal siting for mixed renewable energy sources, photovoltaics, and wind farms. Furthermore, the effect of adding renewable energy sources on the overall generation costs value is investigated. The exploration field of the optimization problem is the active output power of each generator in each studied system. The CHGS also obtains the best candidate design variables, which corresponds to the minimum possible cost function value. The robustness of the introduced CHGS algorithm is verified by performing the simulation 20 independent times for two standard IEEE systems—IEEE 57-bus and 118-bus systems. The results obtained are presented and analyzed. The CHGS-based OPF was found to be competitive and superior to other optimization algorithms applied to solve the same optimization problem in the literature. The contribution of this article is to test the improvement done to the proposed method when applied to the OPF problem, as well as the study of the addition of renewable energy sources on the introduced objective function.

Suggested Citation

  • Mohamed A. M. Shaheen & Hany M. Hasanien & Rania A. Turky & Martin Ćalasan & Ahmed F. Zobaa & Shady H. E. Abdel Aleem, 2021. "OPF of Modern Power Systems Comprising Renewable Energy Sources Using Improved CHGS Optimization Algorithm," Energies, MDPI, vol. 14(21), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6962-:d:662845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/6962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/6962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Okpokparoro, Salem & Sriramula, Srinivas, 2021. "Uncertainty modeling in reliability analysis of floating wind turbine support structures," Renewable Energy, Elsevier, vol. 165(P1), pages 88-108.
    2. Nguyen, Thang Trung, 2019. "A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization," Energy, Elsevier, vol. 171(C), pages 218-240.
    3. Iris, Çağatay & Lam, Jasmine Siu Lee, 2021. "Optimal energy management and operations planning in seaports with smart grid while harnessing renewable energy under uncertainty," Omega, Elsevier, vol. 103(C).
    4. Li, Yang & Li, Yahui & Li, Guoqing & Zhao, Dongbo & Chen, Chen, 2018. "Two-stage multi-objective OPF for AC/DC grids with VSC-HVDC: Incorporating decisions analysis into optimization process," Energy, Elsevier, vol. 147(C), pages 286-296.
    5. Reddy, S. Surender, 2017. "Optimal scheduling of thermal-wind-solar power system with storage," Renewable Energy, Elsevier, vol. 101(C), pages 1357-1368.
    6. Seleem, Sameh I. & Hasanien, Hany M. & El-Fergany, Attia A., 2021. "Equilibrium optimizer for parameter extraction of a fuel cell dynamic model," Renewable Energy, Elsevier, vol. 169(C), pages 117-128.
    7. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    8. Mohamed A. M. Shaheen & Dalia Yousri & Ahmed Fathy & Hany M. Hasanien & Abdulaziz Alkuhayli & S. M. Muyeen, 2020. "A Novel Application of Improved Marine Predators Algorithm and Particle Swarm Optimization for Solving the ORPD Problem," Energies, MDPI, vol. 13(21), pages 1-23, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasanien, Hany M. & Alsaleh, Ibrahim & Alassaf, Abdullah & Alateeq, Ayoob, 2023. "Enhanced coati optimization algorithm-based optimal power flow including renewable energy uncertainties and electric vehicles," Energy, Elsevier, vol. 283(C).
    2. Ćalasan, Martin & Abdel Aleem, Shady H.E. & Hasanien, Hany M. & Alaas, Zuhair M. & Ali, Ziad M., 2023. "An innovative approach for mathematical modeling and parameter estimation of PEM fuel cells based on iterative Lambert W function," Energy, Elsevier, vol. 264(C).
    3. Mahmoud El-Dabah & Mohamed A. Ebrahim & Ragab A. El-Sehiemy & Z. Alaas & M. M. Ramadan, 2022. "A Modified Whale Optimizer for Single- and Multi-Objective OPF Frameworks," Energies, MDPI, vol. 15(7), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    2. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    3. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    4. Xiao, Hui & Cao, Minhao, 2020. "Balancing the demand and supply of a power grid system via reliability modeling and maintenance optimization," Energy, Elsevier, vol. 210(C).
    5. Abdullah Shaheen & Ahmed Ginidi & Ragab El-Sehiemy & Abdallah Elsayed & Ehab Elattar & Hassen T. Dorrah, 2022. "Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems," Mathematics, MDPI, vol. 10(10), pages 1-29, May.
    6. Meng, Anbo & Zeng, Cong & Wang, Peng & Chen, De & Zhou, Tianmin & Zheng, Xiaoying & Yin, Hao, 2021. "A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem," Energy, Elsevier, vol. 225(C).
    7. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    8. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Alharthi, Mosleh M. & Ghoneim, Sherif S.M. & Ginidi, Ahmed R., 2021. "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," Energy, Elsevier, vol. 237(C).
    9. Hasanien, Hany M. & Shaheen, Mohamed A.M. & Turky, Rania A. & Qais, Mohammed H. & Alghuwainem, Saad & Kamel, Salah & Tostado-Véliz, Marcos & Jurado, Francisco, 2022. "Precise modeling of PEM fuel cell using a novel Enhanced Transient Search Optimization algorithm," Energy, Elsevier, vol. 247(C).
    10. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    11. Aruna Kanagaraj & Kumudini Devi Raguru Pandu, 2020. "Investigations of Various Market Models in a Deregulated Power Environment Using ACOPF," Energies, MDPI, vol. 13(9), pages 1-17, May.
    12. Sakthivel, V.P. & Thirumal, K. & Sathya, P.D., 2022. "Short term scheduling of hydrothermal power systems with photovoltaic and pumped storage plants using quasi-oppositional turbulent water flow optimization," Renewable Energy, Elsevier, vol. 191(C), pages 459-492.
    13. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    14. Li, Yang & Wang, Jinlong & Zhao, Dongbo & Li, Guoqing & Chen, Chen, 2018. "A two-stage approach for combined heat and power economic emission dispatch: Combining multi-objective optimization with integrated decision making," Energy, Elsevier, vol. 162(C), pages 237-254.
    15. Xu, Jiuping & Wang, Fengjuan & Lv, Chengwei & Huang, Qian & Xie, Heping, 2018. "Economic-environmental equilibrium based optimal scheduling strategy towards wind-solar-thermal power generation system under limited resources," Applied Energy, Elsevier, vol. 231(C), pages 355-371.
    16. Seok-Ju Lee & Hae-Jin Sung & Minwon Park & DuYean Won & Jaeun Yoo & Hyung Suk Yang, 2019. "Analysis of the Temperature Characteristics of Three-Phase Coaxial Superconducting Power Cable according to a Liquid Nitrogen Circulation Method for Real-Grid Application in Korea," Energies, MDPI, vol. 12(9), pages 1-11, May.
    17. Erfan Mohagheghi & Mansour Alramlawi & Aouss Gabash & Pu Li, 2018. "A Survey of Real-Time Optimal Power Flow," Energies, MDPI, vol. 11(11), pages 1-20, November.
    18. Jinyeong Lee & Kyungcheol Shin & Young-Min Wi, 2024. "Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea," Sustainability, MDPI, vol. 16(13), pages 1-24, June.
    19. Domenico Gattuso & Domenica Savia Pellicanò, 2023. "HUs Fleet Management in an Automated Container Port: Assessment by a Simulation Approach," Sustainability, MDPI, vol. 15(14), pages 1-19, July.
    20. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:6962-:d:662845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.