IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i10p1636-d813289.html
   My bibliography  Save this article

Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems

Author

Listed:
  • Abdullah Shaheen

    (Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt)

  • Ahmed Ginidi

    (Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez 43533, Egypt)

  • Ragab El-Sehiemy

    (Department of Electrical Engineering, Faculty of Engineering, Kafrelsheikh University, Kafrelsheikh 33516, Egypt)

  • Abdallah Elsayed

    (Department of Electrical Engineering, Faculty of Engineering, Damietta University, Damietta 34517, Egypt)

  • Ehab Elattar

    (Department of Electrical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Hassen T. Dorrah

    (Department of Electrical Engineering, Cairo University, Giza 12613, Egypt)

Abstract

This paper presents a developed solution based on gorilla troops optimization technique for OPFP in EPSs. The GTOT is motivated by gorillas’ group behaviors in which several methods are replicated, such as migration to an unfamiliar location, traveling to other gorillas, migration toward a specific spot, accompanying the silverback, and competing for adult females. The multi-dimension OPFP in EPSs is examined in this article with numerous optimizing objectives of fuel cost, power losses, and harmful pollutants. The system’s power demand and transmission losses must be met as well. The developed GTOT’s evaluation is conducted using an IEEE standard 30-bus EPS and practical EPS from Egypt. The created GTOT is employed in numerous evaluations and statistical analyses using many modern methods such as CST, GWT, ISHT, NBT, and SST. When compared to other similar approaches in the literature, the simulated results demonstrate the GTOT’s solution efficiency and robustness.

Suggested Citation

  • Abdullah Shaheen & Ahmed Ginidi & Ragab El-Sehiemy & Abdallah Elsayed & Ehab Elattar & Hassen T. Dorrah, 2022. "Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems," Mathematics, MDPI, vol. 10(10), pages 1-29, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1636-:d:813289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/10/1636/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/10/1636/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    2. Zhang, Jingrui & Wang, Silu & Tang, Qinghui & Zhou, Yulu & Zeng, Tao, 2019. "An improved NSGA-III integrating adaptive elimination strategy to solution of many-objective optimal power flow problems," Energy, Elsevier, vol. 172(C), pages 945-957.
    3. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    4. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    5. Nguyen, Thang Trung, 2019. "A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization," Energy, Elsevier, vol. 171(C), pages 218-240.
    6. Horng, Shih-Cheng & Lin, Shieh-Shing, 2019. "Bat algorithm assisted by ordinal optimization for solving discrete probabilistic bicriteria optimization problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 166(C), pages 346-364.
    7. Mostafa Abdo & Salah Kamel & Mohamed Ebeed & Juan Yu & Francisco Jurado, 2018. "Solving Non-Smooth Optimal Power Flow Problems Using a Developed Grey Wolf Optimizer," Energies, MDPI, vol. 11(7), pages 1-16, June.
    8. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Alharthi, Mosleh M. & Ghoneim, Sherif S.M. & Ginidi, Ahmed R., 2021. "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," Energy, Elsevier, vol. 237(C).
    9. Elattar, Ehab E. & ElSayed, Salah K., 2019. "Modified JAYA algorithm for optimal power flow incorporating renewable energy sources considering the cost, emission, power loss and voltage profile improvement," Energy, Elsevier, vol. 178(C), pages 598-609.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucas do Carmo Yamaguti & Juan Manuel Home-Ortiz & Mahdi Pourakbari-Kasmaei & José Roberto Sanches Mantovani, 2023. "Economic/Environmental Optimal Power Flow Using a Multiobjective Convex Formulation," Energies, MDPI, vol. 16(12), pages 1-21, June.
    2. Dapeng Wang & Cong Zhang & Wanqing Jia & Qian Liu & Long Cheng & Huaizhi Yang & Yufeng Luo & Na Kuang, 2022. "A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation," Energies, MDPI, vol. 15(20), pages 1-19, October.
    3. Jinhua You & Heming Jia & Di Wu & Honghua Rao & Changsheng Wen & Qingxin Liu & Laith Abualigah, 2023. "Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    4. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2023. "An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    5. Kumeshan Reddy & Akshay Kumar Saha, 2022. "An Investigation into the Utilization of Swarm Intelligence for the Design of Dual Vector and Proportional–Resonant Controllers for Regulation of Doubly Fed Induction Generators Subject to Unbalanced ," Energies, MDPI, vol. 15(20), pages 1-36, October.
    6. Jaime Pilatásig & Diego Carrión & Manuel Jaramillo, 2022. "Resilience Maximization in Electrical Power Systems through Switching of Power Transmission Lines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    7. Jamal, Raheela & Zhang, Junzhe & Men, Baohui & Khan, Noor Habib & Ebeed, Mohamed & Jamal, Tanzeela & Mohamed, Emad A., 2024. "Chaotic-quasi-oppositional-phasor based multi populations gorilla troop optimizer for optimal power flow solution," Energy, Elsevier, vol. 301(C).
    8. Shahenda Sarhan & Abdullah Mohamed Shaheen & Ragab A. El-Sehiemy & Mona Gafar, 2022. "An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems," Mathematics, MDPI, vol. 10(12), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Hasanien, Hany M. & Ginidi, Ahmed R., 2022. "An improved heap optimization algorithm for efficient energy management based optimal power flow model," Energy, Elsevier, vol. 250(C).
    2. Li, Shuijia & Gong, Wenyin & Hu, Chengyu & Yan, Xuesong & Wang, Ling & Gu, Qiong, 2021. "Adaptive constraint differential evolution for optimal power flow," Energy, Elsevier, vol. 235(C).
    3. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Alharthi, Mosleh M. & Ghoneim, Sherif S.M. & Ginidi, Ahmed R., 2021. "Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework," Energy, Elsevier, vol. 237(C).
    4. Ragab El-Sehiemy & Abdallah Elsayed & Abdullah Shaheen & Ehab Elattar & Ahmed Ginidi, 2021. "Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer," Sustainability, MDPI, vol. 13(21), pages 1-24, October.
    5. Li, Shuijia & Gong, Wenyin & Wang, Ling & Yan, Xuesong & Hu, Chengyu, 2020. "Optimal power flow by means of improved adaptive differential evolution," Energy, Elsevier, vol. 198(C).
    6. Xiao, Hui & Cao, Minhao, 2020. "Balancing the demand and supply of a power grid system via reliability modeling and maintenance optimization," Energy, Elsevier, vol. 210(C).
    7. Ali S. Alghamdi, 2022. "Optimal Power Flow in Wind–Photovoltaic Energy Regulation Systems Using a Modified Turbulent Water Flow-Based Optimization," Sustainability, MDPI, vol. 14(24), pages 1-27, December.
    8. Abdullah Khan & Hashim Hizam & Noor Izzri Abdul-Wahab & Mohammad Lutfi Othman, 2020. "Solution of Optimal Power Flow Using Non-Dominated Sorting Multi Objective Based Hybrid Firefly and Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 13(16), pages 1-24, August.
    9. Shahenda Sarhan & Abdullah Mohamed Shaheen & Ragab A. El-Sehiemy & Mona Gafar, 2022. "An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
    10. Sherif S. M. Ghoneim & Mohamed F. Kotb & Hany M. Hasanien & Mosleh M. Alharthi & Attia A. El-Fergany, 2021. "Cost Minimizations and Performance Enhancements of Power Systems Using Spherical Prune Differential Evolution Algorithm Including Modal Analysis," Sustainability, MDPI, vol. 13(14), pages 1-15, July.
    11. Meng, Anbo & Zeng, Cong & Wang, Peng & Chen, De & Zhou, Tianmin & Zheng, Xiaoying & Yin, Hao, 2021. "A high-performance crisscross search based grey wolf optimizer for solving optimal power flow problem," Energy, Elsevier, vol. 225(C).
    12. El Sehiemy, Ragab A. & Selim, F. & Bentouati, Bachir & Abido, M.A., 2020. "A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems," Energy, Elsevier, vol. 193(C).
    13. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2023. "An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    14. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    15. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "A Slime Mould Algorithm Programming for Solving Single and Multi-Objective Optimal Power Flow Problems with Pareto Front Approach: A Case Study of the Iraqi Super Grid High Voltage," Energies, MDPI, vol. 15(20), pages 1-33, October.
    16. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    17. Murtadha Al-Kaabi & Virgil Dumbrava & Mircea Eremia, 2022. "Single and Multi-Objective Optimal Power Flow Based on Hunger Games Search with Pareto Concept Optimization," Energies, MDPI, vol. 15(22), pages 1-31, November.
    18. Shaheen, Abdullah M. & El-Sehiemy, Ragab A. & Elattar, Ehab & Ginidi, Ahmed R., 2022. "An Amalgamated Heap and Jellyfish Optimizer for economic dispatch in Combined heat and power systems including N-1 Unit outages," Energy, Elsevier, vol. 246(C).
    19. Gengli Song & Hua Wei, 2022. "Distributionally Robust Multi-Energy Dynamic Optimal Power Flow Considering Water Spillage with Wasserstein Metric," Energies, MDPI, vol. 15(11), pages 1-18, May.
    20. Shaheen, Abdullah M. & Ginidi, Ahmed R. & El-Sehiemy, Ragab A. & El-Fergany, Attia & Elsayed, Abdallah M., 2023. "Optimal parameters extraction of photovoltaic triple diode model using an enhanced artificial gorilla troops optimizer," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:10:p:1636-:d:813289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.