IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i20p7476-d939021.html
   My bibliography  Save this article

An Investigation into the Utilization of Swarm Intelligence for the Design of Dual Vector and Proportional–Resonant Controllers for Regulation of Doubly Fed Induction Generators Subject to Unbalanced Grid Voltages

Author

Listed:
  • Kumeshan Reddy

    (Electrical, Electronic, and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)

  • Akshay Kumar Saha

    (Electrical, Electronic, and Computer Engineering, University of KwaZulu-Natal, Durban 4041, South Africa)

Abstract

This work presents an investigation into the use of swarm intelligence techniques for the control of the doubly fed induction generator under unbalanced grid voltages. Swarm intelligence is a concept that was introduced in the late 20th century but has since undergone constant evolution and modifications. Similarly, the doubly fed induction generator has recently come under intense investigation. Owing to the direct grid connection of the DFIG, an unbalanced grid voltage harshly impacts its output power. Established mitigation measures include the use of the dual vector and proportional–resonant control methods. This work investigates the effectiveness of utilizing swarm intelligence for the purpose of controller gain optimization. A comparison of the application of swarm intelligence to the dual vector and proportional–resonant controllers was carried out. Three swarm intelligence techniques from across the timeline were utilized including particle swarm optimization, the bat algorithm, and the gorilla troops optimization algorithm. The system was subject to single-phase voltage dips of 5% and 10%. The results indicate that modern swarm intelligence techniques are effective at optimizing controller gains. This shows that as swarm intelligence techniques evolve, they may be suitable for use in the optimization of controller gains for numerous applications.

Suggested Citation

  • Kumeshan Reddy & Akshay Kumar Saha, 2022. "An Investigation into the Utilization of Swarm Intelligence for the Design of Dual Vector and Proportional–Resonant Controllers for Regulation of Doubly Fed Induction Generators Subject to Unbalanced ," Energies, MDPI, vol. 15(20), pages 1-36, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7476-:d:939021
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/20/7476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/20/7476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yan Yan & Meng Wang & Zhan-Feng Song & Chang-Liang Xia, 2012. "Proportional-Resonant Control of Doubly-Fed Induction Generator Wind Turbines for Low-Voltage Ride-Through Enhancement," Energies, MDPI, vol. 5(11), pages 1-21, November.
    2. Kanendra Naidu & Mohd Syukri Ali & Ab Halim Abu Bakar & Chia Kwang Tan & Hamzah Arof & Hazlie Mokhlis, 2020. "Optimized artificial neural network to improve the accuracy of estimated fault impedances and distances for underground distribution system," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-22, January.
    3. João Faria & João Fermeiro & José Pombo & Maria Calado & Sílvio Mariano, 2020. "Proportional Resonant Current Control and Output-Filter Design Optimization for Grid-Tied Inverters Using Grey Wolf Optimizer," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Abdullah Shaheen & Ahmed Ginidi & Ragab El-Sehiemy & Abdallah Elsayed & Ehab Elattar & Hassen T. Dorrah, 2022. "Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems," Mathematics, MDPI, vol. 10(10), pages 1-29, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumeshan Reddy & Akshay Kumar Saha, 2022. "A Heuristic Approach to Optimal Crowbar Setting and Low Voltage Ride through of a Doubly Fed Induction Generator," Energies, MDPI, vol. 15(24), pages 1-36, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shahenda Sarhan & Abdullah Shaheen & Ragab El-Sehiemy & Mona Gafar, 2023. "An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    2. Qingsong Wang & Shuangxia Niu, 2015. "Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine," Energies, MDPI, vol. 8(8), pages 1-17, August.
    3. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    4. Gerardo Humberto Valencia-Rivera & Ivan Amaya & Jorge M. Cruz-Duarte & José Carlos Ortíz-Bayliss & Juan Gabriel Avina-Cervantes, 2021. "Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events," Energies, MDPI, vol. 14(21), pages 1-31, October.
    5. Dapeng Wang & Cong Zhang & Wanqing Jia & Qian Liu & Long Cheng & Huaizhi Yang & Yufeng Luo & Na Kuang, 2022. "A Novel Interval Programming Method and Its Application in Power System Optimization Considering Uncertainties in Load Demands and Renewable Power Generation," Energies, MDPI, vol. 15(20), pages 1-19, October.
    6. Lin, Yonggang & Tu, Le & Liu, Hongwei & Li, Wei, 2016. "Fault analysis of wind turbines in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 482-490.
    7. Norbert Klaes & Florian Pöschke & Horst Schulte, 2021. "Grid Forming Stator Flux Control of Doubly-Fed Induction Generator," Energies, MDPI, vol. 14(20), pages 1-12, October.
    8. Victor F. Mendes & Frederico F. Matos & Silas Y. Liu & Allan F. Cupertino & Heverton A. Pereira & Clodualdo V. De Sousa, 2016. "Low Voltage Ride-Through Capability Solutions for Permanent Magnet Synchronous Wind Generators," Energies, MDPI, vol. 9(1), pages 1-19, January.
    9. Flávio Oliveira & Arthur Amorim & Lucas Encarnação & Jussara Fardin & Marcos Orlando & Selênio Silva & Domingos Simonetti, 2015. "Enhancing LVRT of DFIG by Using a Superconducting Current Limiter on Rotor Circuit," Energies, MDPI, vol. 9(1), pages 1-12, December.
    10. Jau-Woei Perng & Yi-Chang Kuo & Yao-Tsung Chang & Hsi-Hsiang Chang, 2020. "Power Substation Construction and Ventilation System Co-Designed Using Particle Swarm Optimization," Energies, MDPI, vol. 13(9), pages 1-27, May.
    11. Jaime Pilatásig & Diego Carrión & Manuel Jaramillo, 2022. "Resilience Maximization in Electrical Power Systems through Switching of Power Transmission Lines," Energies, MDPI, vol. 15(21), pages 1-15, November.
    12. Ahmed Sobhy & Ahmed G. Abo-Khalil & Dong Lei & Tareq Salameh & Adel Merabet & Malek Alkasrawi, 2022. "Coupling DFIG-Based Wind Turbines with the Grid under Voltage Imbalance Conditions," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    13. Shahenda Sarhan & Abdullah Mohamed Shaheen & Ragab A. El-Sehiemy & Mona Gafar, 2022. "An Enhanced Slime Mould Optimizer That Uses Chaotic Behavior and an Elitist Group for Solving Engineering Problems," Mathematics, MDPI, vol. 10(12), pages 1-30, June.
    14. Lucas do Carmo Yamaguti & Juan Manuel Home-Ortiz & Mahdi Pourakbari-Kasmaei & José Roberto Sanches Mantovani, 2023. "Economic/Environmental Optimal Power Flow Using a Multiobjective Convex Formulation," Energies, MDPI, vol. 16(12), pages 1-21, June.
    15. Rizwan Tariq & Ibrahim Alhamrouni & Ateeq Ur Rehman & Elsayed Tag Eldin & Muhammad Shafiq & Nivin A. Ghamry & Habib Hamam, 2022. "An Optimized Solution for Fault Detection and Location in Underground Cables Based on Traveling Waves," Energies, MDPI, vol. 15(17), pages 1-19, September.
    16. Ramesh Kumar Behara & Akshay Kumar Saha, 2023. "Neural Network Predictive Control for Improved Reliability of Grid-Tied DFIG-Based Wind Energy System under the Three-Phase Fault Condition," Energies, MDPI, vol. 16(13), pages 1-47, June.
    17. Jinhua You & Heming Jia & Di Wu & Honghua Rao & Changsheng Wen & Qingxin Liu & Laith Abualigah, 2023. "Modified Artificial Gorilla Troop Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 11(5), pages 1-42, March.
    18. Mohammad Alali & Zagros Shahooei & Maryam Bahramipanah, 2021. "Resiliency-Oriented Optimization of Critical Parameters in Multi Inverter-Fed Distributed Generation Systems," Sustainability, MDPI, vol. 13(12), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:20:p:7476-:d:939021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.