IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6120-d643368.html
   My bibliography  Save this article

Toward a Unified Model Approach for Evaluating Different Electric Vehicles

Author

Listed:
  • Wael Alosaimi

    (Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Md Tarique Jamal Ansari

    (Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India)

  • Abdullah Alharbi

    (Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Hashem Alyami

    (Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia)

  • Saquib Ali

    (Department of BCA, Azad Degree College, University of Lucknow, Lucknow 226002, Uttar Pradesh, India)

  • Alka Agrawal

    (Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India)

  • Raees Ahmad Khan

    (Department of Information Technology, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India)

Abstract

Considering rising pollution as well as fuel expenses, it has now become critical to transition to a sustainable method of transportation. As a result, automakers have begun to spend on research and development in the electric vehicle (EV) industry. The amount of EVs has expanded rapidly in recent years. This is owing to new improved technology, particularly in electric motor engineering, as well as government initiatives to limit the level of environmental impact produced by combustion engines. Because EVs are powered by electricity, implementing their charging stations presents certain complications. In this paper, we have discussed the different types of EVs, such as BEVs, FCEVs, HEVs, PHEVs, and REHEVs. Even though the capacity of many of these electric car models has been substantially enhanced within the past few years, some challenges remain as a selection barrier for several customers. Considering these challenges, we have also implemented a fuzzy AHP-TOPSIS-based unified model to evaluate the different types of EVs. The study’s technical importance is the identification of various evaluation factors, implementation of a unified model for measuring performance, and computation using the fuzzy MCDM technique. The outcomes of the unified model approach also were validated. We concluded that FCEVs are excellent for long journeys, and have the resources to cause minimal disruption.

Suggested Citation

  • Wael Alosaimi & Md Tarique Jamal Ansari & Abdullah Alharbi & Hashem Alyami & Saquib Ali & Alka Agrawal & Raees Ahmad Khan, 2021. "Toward a Unified Model Approach for Evaluating Different Electric Vehicles," Energies, MDPI, vol. 14(19), pages 1-19, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6120-:d:643368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6120/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6120/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabio Viola, 2021. "Electric Vehicles and Psychology," Sustainability, MDPI, vol. 13(2), pages 1-26, January.
    2. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    3. Khan, Mobashwir & Kockelman, Kara M., 2012. "Predicting the market potential of plug-in electric vehicles using multiday GPS data," Energy Policy, Elsevier, vol. 46(C), pages 225-233.
    4. Wang, Wanying & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Li, Xuefang, 2020. "An empirical evaluation of different usage pattern between car-sharing battery electric vehicles and private ones," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 115-129.
    5. Huang, Chi-Cheng & Chu, Pin-Yu & Chiang, Yu-Hsiu, 2008. "A fuzzy AHP application in government-sponsored R&D project selection," Omega, Elsevier, vol. 36(6), pages 1038-1052, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nykvist, Björn & Sprei, Frances & Nilsson, Måns, 2019. "Assessing the progress toward lower priced long range battery electric vehicles," Energy Policy, Elsevier, vol. 124(C), pages 144-155.
    2. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.
    3. Guido Ala & Ilhami Colak & Gabriella Di Filippo & Rosario Miceli & Pietro Romano & Carla Silva & Stanimir Valtchev & Fabio Viola, 2021. "Electric Mobility in Portugal: Current Situation and Forecasts for Fuel Cell Vehicles," Energies, MDPI, vol. 14(23), pages 1-23, November.
    4. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    5. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    6. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    7. Behiri, Walid & Belmokhtar-Berraf, Sana & Chu, Chengbin, 2018. "Urban freight transport using passenger rail network: Scientific issues and quantitative analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 227-245.
    8. Wanke, Peter Fernandes & Chiappetta Jabbour, Charbel José & Moreira Antunes, Jorge Junio & Lopes de Sousa Jabbour, Ana Beatriz & Roubaud, David & Sobreiro, Vinicius Amorim & Santibanez Gonzalez‬, Erne, 2021. "An original information entropy-based quantitative evaluation model for low-carbon operations in an emerging market," International Journal of Production Economics, Elsevier, vol. 234(C).
    9. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    10. Mediavilla, Margarita & de Castro, Carlos & Capellán, Iñigo & Javier Miguel, Luis & Arto, Iñaki & Frechoso, Fernando, 2013. "The transition towards renewable energies: Physical limits and temporal conditions," Energy Policy, Elsevier, vol. 52(C), pages 297-311.
    11. Rafael Lizarralde & Jaione Ganzarain & Mikel Zubizarreta, 2020. "Assessment and Selection of Technologies for the Sustainable Development of an R&D Center," Sustainability, MDPI, vol. 12(23), pages 1-23, December.
    12. Orsi, Francesco & Muratori, Matteo & Rocco, Matteo & Colombo, Emanuela & Rizzoni, Giorgio, 2016. "A multi-dimensional well-to-wheels analysis of passenger vehicles in different regions: Primary energy consumption, CO2 emissions, and economic cost," Applied Energy, Elsevier, vol. 169(C), pages 197-209.
    13. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    14. Xie, Shaobo & Lang, Kun & Qi, Shanwei, 2020. "Aerodynamic-aware coordinated control of following speed and power distribution for hybrid electric trucks," Energy, Elsevier, vol. 209(C).
    15. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    16. Ali RezaHoseini & Zahra Rahmani & Morteza BagherPour, 2022. "Performance evaluation of sustainable projects: a possibilistic integrated novel analytic hierarchy process-data envelopment analysis approach using Z-Number information," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3198-3257, March.
    17. Morton, Craig & Anable, Jillian & Yeboah, Godwin & Cottrill, Caitlin, 2018. "The spatial pattern of demand in the early market for electric vehicles: Evidence from the United Kingdom," Journal of Transport Geography, Elsevier, vol. 72(C), pages 119-130.
    18. Rakan Alyamani & Suzanna Long, 2020. "The Application of Fuzzy Analytic Hierarchy Process in Sustainable Project Selection," Sustainability, MDPI, vol. 12(20), pages 1-16, October.
    19. Yakubu Tsado & Kelum A. A. Gamage & Bamidele Adebisi & David Lund & Khaled M. Rabie & Augustine Ikpehai, 2017. "Improving the Reliability of Optimised Link State Routing in a Smart Grid Neighbour Area Network based Wireless Mesh Network Using Multiple Metrics," Energies, MDPI, vol. 10(3), pages 1-23, February.
    20. Samuel Pelletier & Ola Jabali & Gilbert Laporte, 2016. "50th Anniversary Invited Article—Goods Distribution with Electric Vehicles: Review and Research Perspectives," Transportation Science, INFORMS, vol. 50(1), pages 3-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6120-:d:643368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.