IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5894-d637568.html
   My bibliography  Save this article

A Survey on Cybersecurity Challenges, Detection, and Mitigation Techniques for the Smart Grid

Author

Listed:
  • Shahid Tufail

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Imtiaz Parvez

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

  • Shanzeh Batool

    (School of Computer Science and Engineering, Vellore Institute of Technology, Sehore 466114, India)

  • Arif Sarwat

    (Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA)

Abstract

The world is transitioning from the conventional grid to the smart grid at a rapid pace. Innovation always comes with some flaws; such is the case with a smart grid. One of the major challenges in the smart grid is to protect it from potential cyberattacks. There are millions of sensors continuously sending and receiving data packets over the network, so managing such a gigantic network is the biggest challenge. Any cyberattack can damage the key elements, confidentiality, integrity, and availability of the smart grid. The overall smart grid network is comprised of customers accessing the network, communication network of the smart devices and sensors, and the people managing the network (decision makers); all three of these levels are vulnerable to cyberattacks. In this survey, we explore various threats and vulnerabilities that can affect the key elements of cybersecurity in the smart grid network and then present the security measures to avert those threats and vulnerabilities at three different levels. In addition to that, we suggest techniques to minimize the chances of cyberattack at all three levels.

Suggested Citation

  • Shahid Tufail & Imtiaz Parvez & Shanzeh Batool & Arif Sarwat, 2021. "A Survey on Cybersecurity Challenges, Detection, and Mitigation Techniques for the Smart Grid," Energies, MDPI, vol. 14(18), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5894-:d:637568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5894/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5894/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A. Reeves & P. Delfabbro & D. Calic, 2021. "Encouraging Employee Engagement With Cybersecurity: How to Tackle Cyber Fatigue," SAGE Open, , vol. 11(1), pages 21582440211, March.
    2. Zhang, Hongwei & Wang, Jinsong & Ding, Yuemin, 2019. "Blockchain-based decentralized and secure keyless signature scheme for smart grid," Energy, Elsevier, vol. 180(C), pages 955-967.
    3. Kimani, Kenneth & Oduol, Vitalice & Langat, Kibet, 2019. "Cyber security challenges for IoT-based smart grid networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 36-49.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berghout, Tarek & Benbouzid, Mohamed & Muyeen, S.M., 2022. "Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    2. Maciej Sawka & Marcin Niemiec, 2022. "A Sponge-Based Key Expansion Scheme for Modern Block Ciphers," Energies, MDPI, vol. 15(19), pages 1-18, September.
    3. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    4. Mikołaj Gwiazdowicz & Marek Natkaniec, 2023. "Feature Selection and Model Evaluation for Threat Detection in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-25, June.
    5. Smitha Joyce Pinto & Pierluigi Siano & Mimmo Parente, 2023. "Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection," Energies, MDPI, vol. 16(4), pages 1-24, February.
    6. Wojciech Szczepanik & Marcin Niemiec, 2022. "Heuristic Intrusion Detection Based on Traffic Flow Statistical Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    7. Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.
    8. Seppo Borenius & Pavithra Gopalakrishnan & Lina Bertling Tjernberg & Raimo Kantola, 2022. "Expert-Guided Security Risk Assessment of Evolving Power Grids," Energies, MDPI, vol. 15(9), pages 1-25, April.
    9. Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
    10. Berghout, Tarek & Benbouzid, Mohamed, 2022. "EL-NAHL: Exploring labels autoencoding in augmented hidden layers of feedforward neural networks for cybersecurity in smart grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Arman Goudarzi & Farzad Ghayoor & Muhammad Waseem & Shah Fahad & Issa Traore, 2022. "A Survey on IoT-Enabled Smart Grids: Emerging, Applications, Challenges, and Outlook," Energies, MDPI, vol. 15(19), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. J. Jin & C. Li & J. Su & J. Tan, 2022. "Fundamental Studies of Smart Distributed Energy Resources along with Energy Blockchain," Energies, MDPI, vol. 15(21), pages 1-12, October.
    2. Lisardo Prieto González & Anna Fensel & Juan Miguel Gómez Berbís & Angela Popa & Antonio de Amescua Seco, 2021. "A Survey on Energy Efficiency in Smart Homes and Smart Grids," Energies, MDPI, vol. 14(21), pages 1-16, November.
    3. Lin, Wen-Ting & Chen, Guo & Zhou, Xiaojun, 2022. "Distributed carbon-aware energy trading of virtual power plant under denial of service attacks: A passivity-based neurodynamic approach," Energy, Elsevier, vol. 257(C).
    4. Shahid Mahmood & Moneeb Gohar & Jin-Ghoo Choi & Seok-Joo Koh & Hani Alquhayz & Murad Khan, 2021. "Digital Certificate Verification Scheme for Smart Grid using Fog Computing (FONICA)," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
    5. Wang, Longze & Jiao, Shucen & Xie, Yu & Xia, Shiwei & Zhang, Delong & Zhang, Yan & Li, Meicheng, 2022. "Two-way dynamic pricing mechanism of hydrogen filling stations in electric-hydrogen coupling system enhanced by blockchain," Energy, Elsevier, vol. 239(PC).
    6. Ben Krishna & Satish Krishnan & M. P. Sebastian, 2023. "Examining the Relationship between National Cybersecurity Commitment, Culture, and Digital Payment Usage: An Institutional Trust Theory Perspective," Information Systems Frontiers, Springer, vol. 25(5), pages 1713-1741, October.
    7. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    8. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    9. Ryan S. Montrose & John F. Gardner & Aykut C. Satici, 2021. "Centralized and Decentralized Optimal Control of Variable Speed Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-18, July.
    10. Han, Dong & Zhang, Chengzhenghao & Ping, Jian & Yan, Zheng, 2020. "Smart contract architecture for decentralized energy trading and management based on blockchains," Energy, Elsevier, vol. 199(C).
    11. Vargas, Paola & Tien, Iris, 2023. "Impacts of 5G on cyber-physical risks for interdependent connected smart critical infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    12. Walter Leal Filho & Peter Yang & João Henrique Paulino Pires Eustachio & Anabela Marisa Azul & Joshua C. Gellers & Agata Gielczyk & Maria Alzira Pimenta Dinis & Valerija Kozlova, 2023. "Deploying digitalisation and artificial intelligence in sustainable development research," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4957-4988, June.
    13. Saif Hussein Abdallah Alghazo & Norshima Humaidi & Shereen Noranee, 2023. "Assessing Information Security Competencies of Firm Leaders towards Improving Procedural Information Security Countermeasure: Awareness and Cybersecurity Protective Behavior," Information Management and Business Review, AMH International, vol. 15(1), pages 1-13.
    14. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    15. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    16. Gisliany Alves & Danielle Marques & Ivanovitch Silva & Luiz Affonso Guedes & Maria da Guia da Silva, 2019. "A Methodology for Dependability Evaluation of Smart Grids," Energies, MDPI, vol. 12(9), pages 1-23, May.
    17. Medjek, Faiza & Tandjaoui, Djamel & Djedjig, Nabil & Romdhani, Imed, 2021. "Fault-tolerant AI-driven Intrusion Detection System for the Internet of Things," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    18. Jena, Prasanta Kumar & Ghosh, Subhojit & Koley, Ebha, 2021. "Design of a coordinated cyber-physical attack in IoT based smart grid under limited intruder accessibility," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    19. Georgios Fragkos & Jay Johnson & Eirini Eleni Tsiropoulou, 2022. "Centralized and Decentralized Distributed Energy Resource Access Control Implementation Considerations," Energies, MDPI, vol. 15(17), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5894-:d:637568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.