IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1651-d1060389.html
   My bibliography  Save this article

Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection

Author

Listed:
  • Smitha Joyce Pinto

    (Department of Electronics and Communication, MIT Mysore, Belawadi, Srirangapatna 571438, India)

  • Pierluigi Siano

    (Department of Electrical and Electronic Engineering Science, University of Johannesburg, Johannesburg 2092, South Africa
    Dipartimento di Scienze Aziendali—Management & Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano, Italy)

  • Mimmo Parente

    (Dipartimento di Scienze Aziendali—Management & Innovation Systems, Università degli Studi di Salerno, 84084 Fisciano, Italy)

Abstract

In a physical microgrid system, equipment failures, manual misbehavior of equipment, and power quality can be affected by intentional cyberattacks, made more dangerous by the widespread use of established communication networks via sensors. This paper comprehensively reviews smart grid challenges on cyber-physical and cyber security systems, standard protocols, communication, and sensor technology. Existing supervised learning-based Machine Learning (ML) methods for identifying cyberattacks in smart grids mostly rely on instances of both normal and attack events for training. Additionally, for supervised learning to be effective, the training dataset must contain representative examples of various attack situations having different patterns, which is challenging. Therefore, we reviewed a novel Data Mining (DM) approach based on unsupervised rules for identifying False Data Injection Cyber Attacks (FDIA) in smart grids using Phasor Measurement Unit (PMU) data. The unsupervised algorithm is excellent for discovering unidentified assault events since it only uses examples of typical events to train the detection models. The datasets used in our study, which looked at some well-known unsupervised detection methods, helped us assess the performances of different methods. The performance comparison with popular unsupervised algorithms is better at finding attack events if compared with supervised and Deep Learning (DL) algorithms.

Suggested Citation

  • Smitha Joyce Pinto & Pierluigi Siano & Mimmo Parente, 2023. "Review of Cybersecurity Analysis in Smart Distribution Systems and Future Directions for Using Unsupervised Learning Methods for Cyber Detection," Energies, MDPI, vol. 16(4), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1651-:d:1060389
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1651/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1651/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianguo Ding & Attia Qammar & Zhimin Zhang & Ahmad Karim & Huansheng Ning, 2022. "Cyber Threats to Smart Grids: Review, Taxonomy, Potential Solutions, and Future Directions," Energies, MDPI, vol. 15(18), pages 1-37, September.
    2. Shahid Tufail & Imtiaz Parvez & Shanzeh Batool & Arif Sarwat, 2021. "A Survey on Cybersecurity Challenges, Detection, and Mitigation Techniques for the Smart Grid," Energies, MDPI, vol. 14(18), pages 1-22, September.
    3. Xiaoyong Bo & Zhaoyang Qu & Lei Wang & Yunchang Dong & Zhenming Zhang & Da Wang, 2022. "Active Defense Research against False Data Injection Attacks of Power CPS Based on Data-Driven Algorithms," Energies, MDPI, vol. 15(19), pages 1-23, October.
    4. Ariel Villalón & Marco Rivera & Yamisleydi Salgueiro & Javier Muñoz & Tomislav Dragičević & Frede Blaabjerg, 2020. "Predictive Control for Microgrid Applications: A Review Study," Energies, MDPI, vol. 13(10), pages 1-32, May.
    5. Huitsing, Peter & Chandia, Rodrigo & Papa, Mauricio & Shenoi, Sujeet, 2008. "Attack taxonomies for the Modbus protocols," International Journal of Critical Infrastructure Protection, Elsevier, vol. 1(C), pages 37-44.
    6. Turki Alsuwian & Aiman Shahid Butt & Arslan Ahmed Amin, 2022. "Smart Grid Cyber Security Enhancement: Challenges and Solutions—A Review," Sustainability, MDPI, vol. 14(21), pages 1-21, October.
    7. Fazel Mohammadi, 2021. "Emerging Challenges in Smart Grid Cybersecurity Enhancement: A Review," Energies, MDPI, vol. 14(5), pages 1-9, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaoula Hassini & Ahmed Fakhfakh & Faouzi Derbel, 2023. "Optimal Placement of μ PMUs in Distribution Networks with Adaptive Topology Changes," Energies, MDPI, vol. 16(20), pages 1-27, October.
    2. Omar A. Beg & Asad Ali Khan & Waqas Ur Rehman & Ali Hassan, 2023. "A Review of AI-Based Cyber-Attack Detection and Mitigation in Microgrids," Energies, MDPI, vol. 16(22), pages 1-23, November.
    3. Mousa Mohammed Khubrani & Shadab Alam, 2023. "Blockchain-Based Microgrid for Safe and Reliable Power Generation and Distribution: A Case Study of Saudi Arabia," Energies, MDPI, vol. 16(16), pages 1-34, August.
    4. Murilo Eduardo Casteroba Bento, 2024. "Load Margin Assessment of Power Systems Using Physics-Informed Neural Network with Optimized Parameters," Energies, MDPI, vol. 17(7), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
    2. Mikołaj Gwiazdowicz & Marek Natkaniec, 2023. "Feature Selection and Model Evaluation for Threat Detection in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-25, June.
    3. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    4. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    5. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    6. Monzer, Mohamad-Houssein & Beydoun, Kamal & Ghaith, Alaa & Flaus, Jean-Marie, 2022. "Model-based IDS design for ICSs," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Ghaleb, Asem & Zhioua, Sami & Almulhem, Ahmad, 2018. "On PLC network security," International Journal of Critical Infrastructure Protection, Elsevier, vol. 22(C), pages 62-69.
    8. Rodofile, Nicholas R. & Radke, Kenneth & Foo, Ernest, 2019. "Extending the cyber-attack landscape for SCADA-based critical infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 14-35.
    9. Luís Caseiro & André Mendes, 2021. "Fault Analysis and Non-Redundant Fault Tolerance in 3-Level Double Conversion UPS Systems Using Finite-Control-Set Model Predictive Control," Energies, MDPI, vol. 14(8), pages 1-39, April.
    10. Nor Liza Tumeran & Siti Hajar Yusoff & Teddy Surya Gunawan & Mohd Shahrin Abu Hanifah & Suriza Ahmad Zabidi & Bernardi Pranggono & Muhammad Sharir Fathullah Mohd Yunus & Siti Nadiah Mohd Sapihie & Asm, 2023. "Model Predictive Control Based Energy Management System Literature Assessment for RES Integration," Energies, MDPI, vol. 16(8), pages 1-27, April.
    11. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    12. Kaiye Gao & Tianshi Wang & Chenjing Han & Jinhao Xie & Ye Ma & Rui Peng, 2021. "A Review of Optimization of Microgrid Operation," Energies, MDPI, vol. 14(10), pages 1-39, May.
    13. Rahman, Ayesha & Mustafa, Ghulam & Khan, Abdul Qayyum & Abid, Muhammad & Durad, Muhammad Hanif, 2022. "Launch of denial of service attacks on the modbus/TCP protocol and development of its protection mechanisms," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    14. Ammar Armghan & Muhammad Kashif Azeem & Hammad Armghan & Ming Yang & Fayadh Alenezi & Mudasser Hassan, 2021. "Dynamical Operation Based Robust Nonlinear Control of DC Microgrid Considering Renewable Energy Integration," Energies, MDPI, vol. 14(13), pages 1-23, July.
    15. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Matthew Boeding & Kelly Boswell & Michael Hempel & Hamid Sharif & Juan Lopez & Kalyan Perumalla, 2022. "Survey of Cybersecurity Governance, Threats, and Countermeasures for the Power Grid," Energies, MDPI, vol. 15(22), pages 1-22, November.
    17. Wojciech Szczepanik & Marcin Niemiec, 2022. "Heuristic Intrusion Detection Based on Traffic Flow Statistical Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    18. Saeedreza Jadidi & Hamed Badihi & Youmin Zhang, 2020. "Passive Fault-Tolerant Control Strategies for Power Converter in a Hybrid Microgrid," Energies, MDPI, vol. 13(21), pages 1-28, October.
    19. Jessica B. Heluany & Ricardo Galvão, 2023. "IEC 62443 Standard for Hydro Power Plants," Energies, MDPI, vol. 16(3), pages 1-16, February.
    20. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1651-:d:1060389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.