IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i11p3105-d562637.html
   My bibliography  Save this article

Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review

Author

Listed:
  • Mohamed Zbair

    (Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
    Institut de Science des Materiaux de Mulhouse UMR 7361, Université de Strasbourg, F-67000 Strasbourg, France)

  • Simona Bennici

    (Institut de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100 Mulhouse, France
    Institut de Science des Materiaux de Mulhouse UMR 7361, Université de Strasbourg, F-67000 Strasbourg, France)

Abstract

To improve the proficiency of energy systems in addition to increasing the usage of renewable energies, thermal energy storage (TES) is a strategic path. The present literature review reports an overview of the recent advancements in the utilization of salt hydrates (single or binary mixtures) and composites as sorbents for sorption heat storage. Starting by introducing various heat storage systems, the operating concept of the adsorption TES was clarified and contrasted to other technologies. Consequently, a deep examination and crucial problems related to the different types of salt hydrates and adsorbents were performed. Recent advances in the composite materials used in sorption heat storage were also reviewed and compared. A deep discussion related to safety, price, availability, and hydrothermal stability issues is reported. Salt hydrates display high theoretical energy densities, which are promising materials in TES. However, they show a number of drawbacks for use in the basic state including low temperature overhydration and deliquescence (e.g., MgCl 2 ), high temperature degradation, sluggish kinetics leading to a low temperature rise (e.g., MgSO 4 ), corrosiveness and toxicity (e.g., Na 2 S), and low mass transport due to the material macrostructure. The biggest advantage of adsorption materials is that they are more hydrothermally stable. However, since adsorption is the most common sorption phenomenon, such materials have a lower energy content. Furthermore, when compared to salt hydrates, they have higher prices per mass, which reduces their appeal even further when combined with lower energy densities. Economies of scale and the optimization of manufacturing processes may help cut costs. Among the zeolites, Zeolite 13X is among the most promising. Temperature lifts of 35–45 °C were reached in lab-scale reactors and micro-scale experiments under the device operating settings. Although the key disadvantage is an excessively high desorption temperature, which is problematic to attain using heat sources, for instance, solar thermal collectors. To increase the energy densities and enhance the stability of adsorbents, composite materials have been examined to ameliorate the stability and to achieve suitable energy densities. Based on the reviewed materials, MgSO 4 has been identified as the most promising salt; it presents a higher energy density compared to other salts and can be impregnated in a porous matrix to prepare composites in order to overcome the drawbacks connected to its use as pure salt. However, due to pore volume reduction, potential deliquescence and salt leakage from the composite as well as degradation, issues with heat and mass transport can still exist. In addition, to increase the kinetics, stability, and energy density, the use of binary salt deposited in a porous matrix is suitable. Nevertheless, this solution should take into account the deliquescence, safety, and cost of the selected salts. Therefore, binary systems can be the solution to design innovative materials with predetermined sorption properties adapted to particular sorption heat storage cycles. Finally, working condition, desorption temperature, material costs, lifetime, and reparation, among others, are the essential point for commercial competitiveness. High material costs and desorption temperatures, combined with lower energy densities under normal device operating conditions, decrease their market attractiveness. As a result, the introduction of performance metrics within the scientific community and the use of economic features on a material scale are suggested.

Suggested Citation

  • Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3105-:d:562637
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/11/3105/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/11/3105/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pereira da Cunha, Jose & Eames, Philip, 2016. "Thermal energy storage for low and medium temperature applications using phase change materials – A review," Applied Energy, Elsevier, vol. 177(C), pages 227-238.
    2. Zhang, Y.N. & Wang, R.Z. & Zhao, Y.J. & Li, T.X. & Riffat, S.B. & Wajid, N.M., 2016. "Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage," Energy, Elsevier, vol. 115(P1), pages 120-128.
    3. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    4. Michel, Benoit & Neveu, Pierre & Mazet, Nathalie, 2014. "Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications," Energy, Elsevier, vol. 72(C), pages 702-716.
    5. Xu, S.Z. & Wang, R.Z. & Wang, L.W. & Zhu, J., 2019. "Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage," Energy, Elsevier, vol. 167(C), pages 889-901.
    6. Abedin, Ali Haji & Rosen, Marc A., 2012. "Closed and open thermochemical energy storage: Energy- and exergy-based comparisons," Energy, Elsevier, vol. 41(1), pages 83-92.
    7. Sunku Prasad, J. & Muthukumar, P. & Desai, Fenil & Basu, Dipankar N. & Rahman, Muhammad M., 2019. "A critical review of high-temperature reversible thermochemical energy storage systems," Applied Energy, Elsevier, vol. 254(C).
    8. Mehrabadi, Abbas & Farid, Mohammed, 2018. "New salt hydrate composite for low-grade thermal energy storage," Energy, Elsevier, vol. 164(C), pages 194-203.
    9. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    10. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    11. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    12. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Ortiz, Carlos, 2018. "Advanced low-carbon energy measures based on thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3705-3749.
    13. Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
    14. Tatsidjodoung, Parfait & Le Pierrès, Nolwenn & Luo, Lingai, 2013. "A review of potential materials for thermal energy storage in building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 327-349.
    15. Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
    16. Adrián Caraballo & Santos Galán-Casado & Ángel Caballero & Sara Serena, 2021. "Molten Salts for Sensible Thermal Energy Storage: A Review and an Energy Performance Analysis," Energies, MDPI, vol. 14(4), pages 1-15, February.
    17. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    18. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    19. Pardo, P. & Deydier, A. & Anxionnaz-Minvielle, Z. & Rougé, S. & Cabassud, M. & Cognet, P., 2014. "A review on high temperature thermochemical heat energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 591-610.
    20. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    21. N’Tsoukpoe, Kokouvi Edem & Schmidt, Thomas & Rammelberg, Holger Urs & Watts, Beatriz Amanda & Ruck, Wolfgang K.L., 2014. "A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 124(C), pages 1-16.
    22. Alva, Guruprasad & Liu, Lingkun & Huang, Xiang & Fang, Guiyin, 2017. "Thermal energy storage materials and systems for solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 693-706.
    23. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    24. Zhao, Y.J. & Wang, R.Z. & Li, T.X. & Nomura, Y., 2016. "Investigation of a 10 kWh sorption heat storage device for effective utilization of low-grade thermal energy," Energy, Elsevier, vol. 113(C), pages 739-747.
    25. Diana Enescu & Gianfranco Chicco & Radu Porumb & George Seritan, 2020. "Thermal Energy Storage for Grid Applications: Current Status and Emerging Trends," Energies, MDPI, vol. 13(2), pages 1-21, January.
    26. Entezari, Akram & Ge, T.S. & Wang, R.Z., 2018. "Water adsorption on the coated aluminum sheets by composite materials (LiCl + LiBr)/silica gel," Energy, Elsevier, vol. 160(C), pages 64-71.
    27. Michel, Benoit & Mazet, Nathalie & Mauran, Sylvain & Stitou, Driss & Xu, Jing, 2012. "Thermochemical process for seasonal storage of solar energy: Characterization and modeling of a high density reactive bed," Energy, Elsevier, vol. 47(1), pages 553-563.
    28. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    29. Xu, J.X. & Li, T.X. & Chao, J.W. & Yan, T.S. & Wang, R.Z., 2019. "High energy-density multi-form thermochemical energy storage based on multi-step sorption processes," Energy, Elsevier, vol. 185(C), pages 1131-1142.
    30. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2018. "Thermochemical characterizations of high-stable activated alumina/LiCl composites with multistage sorption process for thermal storage," Energy, Elsevier, vol. 156(C), pages 240-249.
    31. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    32. Fopah Lele, Armand & Kuznik, Frédéric & Rammelberg, Holger U. & Schmidt, Thomas & Ruck, Wolfgang K.L., 2015. "Thermal decomposition kinetic of salt hydrates for heat storage systems," Applied Energy, Elsevier, vol. 154(C), pages 447-458.
    33. Yannan Zhang & Ruzhu Wang & Tingxian Li & Yanjie Zhao, 2016. "Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage," Energies, MDPI, vol. 9(10), pages 1-15, October.
    34. Prieto, Cristina & Cooper, Patrick & Fernández, A. Inés & Cabeza, Luisa F., 2016. "Review of technology: Thermochemical energy storage for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 909-929.
    35. Korhammer, Kathrin & Druske, Mona-Maria & Fopah-Lele, Armand & Rammelberg, Holger Urs & Wegscheider, Nina & Opel, Oliver & Osterland, Thomas & Ruck, Wolfgang, 2016. "Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage," Applied Energy, Elsevier, vol. 162(C), pages 1462-1472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salma Benzaria & Ekaterina Mamontova & Yannick Guari & Joulia Larionova & Jérôme Long & Philippe Trens & Fabrice Salles & Jerzy Zajac, 2021. "Heat Release Kinetics upon Water Vapor Sorption Using Cation-Exchanged Zeolites and Prussian Blue Analogues as Adsorbents: Application to Short-Term Low-Temperature Thermochemical Storage of Energy," Energies, MDPI, vol. 14(12), pages 1-18, June.
    2. Leland Weiss & Ramanshu Jha, 2023. "Small-Scale Phase Change Materials in Low-Temperature Applications: A Review," Energies, MDPI, vol. 16(6), pages 1-24, March.
    3. Emanuela Mastronardo & Emanuele La Mazza & Davide Palamara & Elpida Piperopoulos & Daniela Iannazzo & Edoardo Proverbio & Candida Milone, 2022. "Organic Salt Hydrate as a Novel Paradigm for Thermal Energy Storage," Energies, MDPI, vol. 15(12), pages 1-13, June.
    4. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    5. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    7. Ahmed Rezk & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Hasan Demir & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage," Energies, MDPI, vol. 16(1), pages 1-15, December.
    8. Manca Ocvirk & Alenka Ristić & Nataša Zabukovec Logar, 2021. "Synthesis of Mesoporous γ-Alumina Support for Water Composite Sorbents for Low Temperature Sorption Heat Storage," Energies, MDPI, vol. 14(22), pages 1-15, November.
    9. Wang, Yan & Sui, Jiahao & Xu, Zijie, 2022. "Preparation and characterization of CaCl2·6H2O based binary inorganic eutectic system for low temperature thermal energy storage," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Hui Yang & Chengcheng Wang & Lige Tong & Shaowu Yin & Li Wang & Yulong Ding, 2023. "Salt Hydrate Adsorption Material-Based Thermochemical Energy Storage for Space Heating Application: A Review," Energies, MDPI, vol. 16(6), pages 1-54, March.
    5. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    6. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    7. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    8. Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
    9. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    10. Salih Cem Akcaoglu & Zhifa Sun & Stephen Carl Moratti & Georgios Martinopoulos, 2020. "Investigation of Novel Composite Materials for Thermochemical Heat Storage Systems," Energies, MDPI, vol. 13(5), pages 1-31, February.
    11. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    12. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    13. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    14. Palacios, Anabel & Elena Navarro, M. & Barreneche, Camila & Ding, Yulong, 2020. "Hybrid 3 in 1 thermal energy storage system – Outlook for a novel storage strategy," Applied Energy, Elsevier, vol. 274(C).
    15. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    16. Ji, Wenjie & Zhang, Heng & Liu, Shuli & Wang, Zhihao & Deng, Shihan, 2022. "An experimental study on the binary hydrated salt composite zeolite for improving thermochemical energy storage performance," Renewable Energy, Elsevier, vol. 194(C), pages 1163-1173.
    17. Wyttenbach, Joël & Bougard, Jacques & Descy, Gilbert & Skrylnyk, Oleksandr & Courbon, Emilie & Frère, Marc & Bruyat, Fabien, 2018. "Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage," Applied Energy, Elsevier, vol. 230(C), pages 803-815.
    18. Aydin, Devrim & Casey, Sean P. & Chen, Xiangjie & Riffat, Saffa, 2018. "Numerical and experimental analysis of a novel heat pump driven sorption storage heater," Applied Energy, Elsevier, vol. 211(C), pages 954-974.
    19. Chen, Ziwei & Zhang, Yanan & Zhang, Yong & Su, Yuehong & Riffat, Saffa, 2023. "A study on vermiculite-based salt mixture composite materials for low-grade thermochemical adsorption heat storage," Energy, Elsevier, vol. 278(PB).
    20. Benjamin Fumey & Luca Baldini, 2021. "Static Temperature Guideline for Comparative Testing of Sorption Heat Storage Systems for Building Application," Energies, MDPI, vol. 14(13), pages 1-15, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:11:p:3105-:d:562637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.