IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v157y2020icp920-940.html
   My bibliography  Save this article

Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage

Author

Listed:
  • Li, Wei
  • Klemeš, Jiří Jaromír
  • Wang, Qiuwang
  • Zeng, Min

Abstract

Salt-hydrate based thermochemical energy storage is currently a momentous technique utilized for long-term energy storage due to the reversible gas-solid reaction under low-temperature. Among available salt candidates, LiOH·H2O is a promising thermochemical material owing to its high heat storage density of 1400 kJ/kg and low charging temperature. The expanded graphite (EG) is selected as a host matrix owing to its excellent thermal conductivity and abundant microstructure, which can promote the heat and mass transfer. This work focuses on the thermochemical performances of the form-stable LiOH·H2O/EG composite sorbents. Five samples were being synthesized with EG contents of 0, 5, 8, 12 and 15 wt%. These porous sorbents are characterized to understand the microstructure and thermophysical properties. Considering the comprehensive effect of thermal conductivity and storage density, as well as the adsorption kinetics, the 8 wt% EG-doped sample is the most favourable sorbent, which possesses the thermal conductivity of 6.92 W/(m K) and energy density of 1120 kJ/kg. The cyclability results also reveal the energy capacity of this composite maintains ∼90% of the original after ten consecutive heat charging (dehydration) and discharging (hydration), suggesting good stability. Additionally, the active energy of 2.58 × 109 s−1 and pre-exponential factor of 59.5 kJ/mol for the sorbent is derived. Finally, the thermal power of 123 W and thermal efficiency of 83.6% are achieved for the storage unit in simulation. All these results further confirmed the feasibility of the developed composite sorbent in low-grade heat storage.

Suggested Citation

  • Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
  • Handle: RePEc:eee:renene:v:157:y:2020:i:c:p:920-940
    DOI: 10.1016/j.renene.2020.05.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120307606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.05.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fopah-Lele, Armand & Rohde, Christian & Neumann, Karsten & Tietjen, Theo & Rönnebeck, Thomas & N'Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Lab-scale experiment of a closed thermochemical heat storage system including honeycomb heat exchanger," Energy, Elsevier, vol. 114(C), pages 225-238.
    2. Zhang, Y.N. & Wang, R.Z. & Zhao, Y.J. & Li, T.X. & Riffat, S.B. & Wajid, N.M., 2016. "Development and thermochemical characterizations of vermiculite/SrBr2 composite sorbents for low-temperature heat storage," Energy, Elsevier, vol. 115(P1), pages 120-128.
    3. Michel, Benoit & Neveu, Pierre & Mazet, Nathalie, 2014. "Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications," Energy, Elsevier, vol. 72(C), pages 702-716.
    4. Mehrabadi, Abbas & Farid, Mohammed, 2018. "New salt hydrate composite for low-grade thermal energy storage," Energy, Elsevier, vol. 164(C), pages 194-203.
    5. Sögütoglu, L.C. & Donkers, P.A.J. & Fischer, H.R. & Huinink, H.P. & Adan, O.C.G., 2018. "In-depth investigation of thermochemical performance in a heat battery: Cyclic analysis of K2CO3, MgCl2 and Na2S," Applied Energy, Elsevier, vol. 215(C), pages 159-173.
    6. Amiri, Leyla & de Brito, Marco Antonio Rodrigues & Baidya, Durjoy & Kuyuk, Ali Fahrettin & Ghoreishi-Madiseh, Seyed Ali & Sasmito, Agus P. & Hassani, Ferri P., 2019. "Numerical investigation of rock-pile based waste heat storage for remote communities in cold climates," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    7. Zhao, Y.J. & Wang, R.Z. & Zhang, Y.N. & Yu, N., 2016. "Development of SrBr2 composite sorbents for a sorption thermal energy storage system to store low-temperature heat," Energy, Elsevier, vol. 115(P1), pages 129-139.
    8. Zondag, Herbert & Kikkert, Benjamin & Smeding, Simon & Boer, Robert de & Bakker, Marco, 2013. "Prototype thermochemical heat storage with open reactor system," Applied Energy, Elsevier, vol. 109(C), pages 360-365.
    9. Xia, B.Q. & Zhao, C.Y. & Yan, J. & Khosa, A.A., 2020. "Development of granular thermochemical heat storage composite based on calcium oxide," Renewable Energy, Elsevier, vol. 147(P1), pages 969-978.
    10. Palomba, Valeria & Sapienza, Alessio & Aristov, Yuri, 2019. "Dynamics and useful heat of the discharge stage of adsorptive cycles for long term thermal storage," Applied Energy, Elsevier, vol. 248(C), pages 299-309.
    11. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    12. Bott, Christoph & Dressel, Ingo & Bayer, Peter, 2019. "State-of-technology review of water-based closed seasonal thermal energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Li, Chuanchang & Xie, Baoshan & He, Zhangxing & Chen, Jian & Long, Yi, 2019. "3D structure fungi-derived carbon stabilized stearic acid as a composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 140(C), pages 862-873.
    14. N’Tsoukpoe, Kokouvi Edem & Schmidt, Thomas & Rammelberg, Holger Urs & Watts, Beatriz Amanda & Ruck, Wolfgang K.L., 2014. "A systematic multi-step screening of numerous salt hydrates for low temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 124(C), pages 1-16.
    15. Lizana, Jesús & Chacartegui, Ricardo & Barrios-Padura, Angela & Valverde, José Manuel, 2017. "Advances in thermal energy storage materials and their applications towards zero energy buildings: A critical review," Applied Energy, Elsevier, vol. 203(C), pages 219-239.
    16. Stengler, Jana & Linder, Marc, 2020. "Thermal energy storage combined with a temperature boost: An underestimated feature of thermochemical systems," Applied Energy, Elsevier, vol. 262(C).
    17. Bennici, Simona & Polimann, Téo & Ondarts, Michel & Gonze, Evelyne & Vaulot, Cyril & Le Pierrès, Nolwenn, 2020. "Long-term impact of air pollutants on thermochemical heat storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    18. Mahon, D. & Henshall, P. & Claudio, G. & Eames, P.C., 2020. "Feasibility study of MgSO4 + zeolite based composite thermochemical energy stores charged by vacuum flat plate solar thermal collectors for seasonal thermal energy storage," Renewable Energy, Elsevier, vol. 145(C), pages 1799-1807.
    19. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    20. Xu, J.X. & Li, T.X. & Chao, J.W. & Yan, T.S. & Wang, R.Z., 2019. "High energy-density multi-form thermochemical energy storage based on multi-step sorption processes," Energy, Elsevier, vol. 185(C), pages 1131-1142.
    21. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Energy density and storage capacity cost comparison of conceptual solid and liquid sorption seasonal heat storage systems for low-temperature space heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1314-1331.
    22. Guo, Shaopeng & Liu, Qibin & Zhao, Jun & Jin, Guang & Wang, Xiaotong & Lang, Zhongmin & He, Wenxiu & Gong, Zhijun, 2017. "Evaluation and comparison of erythritol-based composites with addition of expanded graphite and carbon nanotubes," Applied Energy, Elsevier, vol. 205(C), pages 703-709.
    23. Salih, Salah M. & Jalil, Jalal M. & Najim, Saleh E., 2019. "Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM," Renewable Energy, Elsevier, vol. 143(C), pages 1053-1066.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han, X.C. & Xu, H.J. & Zhao, C.Y., 2022. "Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling," Renewable Energy, Elsevier, vol. 195(C), pages 1324-1340.
    2. Honcová, Pavla & Sádovská, Galina & Pastvová, Jana & Koštál, Petr & Seidel, Jürgen & Sazama, Petr & Pilař, Radim, 2021. "Improvement of thermal energy accumulation by incorporation of carbon nanomaterial into magnesium chloride hexahydrate and magnesium nitrate hexahydrate," Renewable Energy, Elsevier, vol. 168(C), pages 1015-1026.
    3. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    4. Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
    6. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Li, Wei & Zhang, Lianjie & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Thermochemical energy conversion behaviour in the corrugated heat storage unit with porous metal support," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Hui Yang & Chengcheng Wang & Lige Tong & Shaowu Yin & Li Wang & Yulong Ding, 2023. "Salt Hydrate Adsorption Material-Based Thermochemical Energy Storage for Space Heating Application: A Review," Energies, MDPI, vol. 16(6), pages 1-54, March.
    3. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2021. "Numerical analysis on the improved thermo-chemical behaviour of hierarchical energy materials as a cascaded thermal accumulator," Energy, Elsevier, vol. 232(C).
    4. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    5. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    6. Zhang, Yong & Hu, Mingke & Chen, Ziwei & Su, Yuehong & Riffat, Saffa, 2023. "Modelling analysis of a solar-driven thermochemical energy storage unit combined with heat recovery," Renewable Energy, Elsevier, vol. 206(C), pages 722-737.
    7. Mehrabadi, Abbas & Crotet, Engie & Farid, Mohammed, 2018. "An innovative approach for storing low-grade thermal energy using liquid phase thermoreversible reaction," Applied Energy, Elsevier, vol. 222(C), pages 823-829.
    8. Wyttenbach, Joël & Bougard, Jacques & Descy, Gilbert & Skrylnyk, Oleksandr & Courbon, Emilie & Frère, Marc & Bruyat, Fabien, 2018. "Performances and modelling of a circular moving bed thermochemical reactor for seasonal storage," Applied Energy, Elsevier, vol. 230(C), pages 803-815.
    9. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    10. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Xu, J.X. & Li, T.X. & Chao, J.W. & Yan, T.S. & Wang, R.Z., 2019. "High energy-density multi-form thermochemical energy storage based on multi-step sorption processes," Energy, Elsevier, vol. 185(C), pages 1131-1142.
    12. Gaeini, M. & Rouws, A.L. & Salari, J.W.O. & Zondag, H.A. & Rindt, C.C.M., 2018. "Characterization of microencapsulated and impregnated porous host materials based on calcium chloride for thermochemical energy storage," Applied Energy, Elsevier, vol. 212(C), pages 1165-1177.
    13. Salviati, Sergio & Carosio, Federico & Cantamessa, Francesco & Medina, Lilian & Berglund, Lars A. & Saracco, Guido & Fina, Alberto, 2020. "Ice-templated nanocellulose porous structure enhances thermochemical storage kinetics in hydrated salt/graphite composites," Renewable Energy, Elsevier, vol. 160(C), pages 698-706.
    14. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    15. Ait Ousaleh, Hanane & Sair, Said & Zaki, Abdelali & Younes, Abboud & Faik, Abdessamad & El Bouari, Abdeslam, 2020. "Advanced experimental investigation of double hydrated salts and their composite for improved cycling stability and metal compatibility for long-term heat storage technologies," Renewable Energy, Elsevier, vol. 162(C), pages 447-457.
    16. Anti Kur & Jo Darkwa & John Calautit & Rabah Boukhanouf & Mark Worall, 2023. "Solid–Gas Thermochemical Energy Storage Materials and Reactors for Low to High-Temperature Applications: A Concise Review," Energies, MDPI, vol. 16(2), pages 1-35, January.
    17. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    18. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    19. Humbert, Gabriele & Ding, Yulong & Sciacovelli, Adriano, 2022. "Combined enhancement of thermal and chemical performance of closed thermochemical energy storage system by optimized tree-like heat exchanger structures," Applied Energy, Elsevier, vol. 311(C).
    20. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:157:y:2020:i:c:p:920-940. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.