IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp1324-1340.html
   My bibliography  Save this article

Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling

Author

Listed:
  • Han, X.C.
  • Xu, H.J.
  • Zhao, C.Y.

Abstract

Thermochemical heat storage is a process of storing and releasing thermal energy with gas-solid reactions, e.g. the interaction of oxides and water vapor. To guarantee a more balanced reaction pressure in the thermochemical heat storage, a multi-layered reactor with multiple reacting zones was designed based on calcium materials. This novel fixed-bed reactor could enable material stacking more rational and eliminate the issue of excessive stacking causing steam obstruction. In comparison to the conventional straight-cylinder reactor, the multi-layered reactor has a more balanced pressure distribution. In this study, a mathematical model for thermochemical heat storage with multiple physical fields coupling is developed based on the multi-layered reactor, and the verification results show that the mathematical model is in good agreement with the experimental data in literature. The thermochemical heat storage process of materials with porosities of 0.5, 0.6, 0.7, 0.8, and 0.9 was numerically simulated by finite element method (FEM) under experimental boundary and initial conditions. Results indicate that for the whole 100–120 min exothermic period, the peak temperature of the process may reach around 510 °C. With different porosities, the total power output can be up to 470 W, 429 W, 330 W, 209 W, and 93 W and the maximum pressures are respectively 2.9 MPa, 1.2 MPa, 0.27 MPa, and 0.21 MPa near the entrance. The mathematic model and numerical simulation for the multi-layered thermochemical reactor with heat extraction process in present work could provide data reference for thermochemical theoretical research, reactor design, and reaction optimization.

Suggested Citation

  • Han, X.C. & Xu, H.J. & Zhao, C.Y., 2022. "Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling," Renewable Energy, Elsevier, vol. 195(C), pages 1324-1340.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1324-1340
    DOI: 10.1016/j.renene.2022.06.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wan, Zhanghao & Hu, Jianhang & Qi, Xianjin, 2021. "Numerical analysis of hydrodynamics and thermochemical property of biomass gasification in a pilot-scale circulating fluidized bed," Energy, Elsevier, vol. 225(C).
    2. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    3. Zheng, Hangbin & Liu, Xianglei & Xuan, Yimin & Song, Chao & Liu, Dachuan & Zhu, Qibin & Zhu, Zhonghui & Gao, Ke & Li, Yongliang & Ding, Yulong, 2021. "Thermochemical heat storage performances of fluidized black CaCO3 pellets under direct concentrated solar irradiation," Renewable Energy, Elsevier, vol. 178(C), pages 1353-1369.
    4. Meroueh, Laureen & Yenduru, Karthik & Dasgupta, Arindam & Jiang, Duo & AuYeung, Nick, 2019. "Energy storage based on SrCO3 and Sorbents—A probabilistic analysis towards realizing solar thermochemical power plants," Renewable Energy, Elsevier, vol. 133(C), pages 770-786.
    5. Shkatulov, Alexandr & Ryu, Junichi & Kato, Yukitaka & Aristov, Yury, 2012. "Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat," Energy, Elsevier, vol. 44(1), pages 1028-1034.
    6. André, Laurie & Abanades, Stéphane & Flamant, Gilles, 2016. "Screening of thermochemical systems based on solid-gas reversible reactions for high temperature solar thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 703-715.
    7. Karasavvas, Evgenios & Panopoulos, Kyriakos D. & Papadopoulou, Simira & Voutetakis, Spyros, 2020. "Energy and exergy analysis of the integration of concentrated solar power with calcium looping for power production and thermochemical energy storage," Renewable Energy, Elsevier, vol. 154(C), pages 743-753.
    8. Yang, Qi-Cheng & Zheng, Mingbo & Chang, Chun-Ping, 2022. "Energy policy and green innovation: A quantile investigation into renewable energy," Renewable Energy, Elsevier, vol. 189(C), pages 1166-1175.
    9. Zhang, Dan & Zheng, Mingbo & Feng, Gen-Fu & Chang, Chun-Ping, 2022. "Does an environmental policy bring to green innovation in renewable energy?," Renewable Energy, Elsevier, vol. 195(C), pages 1113-1124.
    10. Shao, H. & Nagel, T. & Roßkopf, C. & Linder, M. & Wörner, A. & Kolditz, O., 2013. "Non-equilibrium thermo-chemical heat storage in porous media: Part 2 – A 1D computational model for a calcium hydroxide reaction system," Energy, Elsevier, vol. 60(C), pages 271-282.
    11. Duan, Wenqi & Khurshid, Adnan & Nazir, Naila & Khan, Khalid & Calin, Adrian Cantemir, 2022. "From gray to green: Energy crises and the role of CPEC," Renewable Energy, Elsevier, vol. 190(C), pages 188-207.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wei & Shuai, Yong & Yang, Jiangyu & Lougou, Bachirou Guene & Huang, Yudong, 2023. "Heat transfer and heat storage characteristics of calcium hydroxide/oxide based on shell-tube thermochemical energy storage device," Renewable Energy, Elsevier, vol. 218(C).
    2. Prill, Torben & Latz, Arnulf & Jahnke, Thomas, 2025. "Modeling of powder bed dynamics in thermochemical heat storage," Applied Energy, Elsevier, vol. 383(C).
    3. Wang, Yuhao & Wang, Ruilin & Guo, Yafei & Yang, Qingshan & Ying, Jiaheng & Liu, Yuanyuan & Sun, Jian & Li, Wenjia & Zhao, Chuanwen, 2024. "The optimization of the MgO/MgCO3 decarbonation process and machine learning-based improved reactor design approach," Energy, Elsevier, vol. 305(C).
    4. Han, X.C. & Xu, H.J. & Hua, W.S., 2023. "Decomposition performance and kinetics analysis of magnesium hydroxide regulated with C/N/Ti/Si additives for thermochemical heat storage," Applied Energy, Elsevier, vol. 344(C).
    5. Lv, Xiaojun & Jiang, Lei & Yan, Jun & Zhao, Changying, 2024. "Dehydration performance improvement of calcium hydroxide/calcium oxide system based on horizontal biaxial stirred reactor," Energy, Elsevier, vol. 313(C).
    6. Wang, Wei & Yang, Jianyu & Lougou, Bachirou Guene & Huang, Yudong & Shuai, Yong, 2024. "Effect of fluid direction and reactor structure on heat storage performance of Ca(OH)2/CaO based on shell-tube thermochemical energy storage device," Renewable Energy, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Yun & Yang, Zhaohui, 2023. "The more red the greener? How the Communist Party of China's party organizations influences corporate green innovation," Finance Research Letters, Elsevier, vol. 55(PA).
    2. Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
    3. Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
    4. Daquan Gao & Christina W. Y. Wong & Kee-hung Lai, 2023. "Development of Ecosystem for Corporate Green Innovation: Resource Dependency Theory Perspective," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    5. Müller, Danny & Knoll, Christian & Gravogl, Georg & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Schreiner, Manfred & Harasek, Michael & Hradil, Klaudia & Werner, An, 2019. "Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Pan, Zhihao & Zhao, C.Y., 2015. "Dehydration/hydration of MgO/H2O chemical thermal storage system," Energy, Elsevier, vol. 82(C), pages 611-618.
    7. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    8. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    9. Wang, Zhongcheng & Li, Xinyue & Xue, Xinhong & Liu, Yahuan, 2022. "More government subsidies, more green innovation? The evidence from Chinese new energy vehicle enterprises," Renewable Energy, Elsevier, vol. 197(C), pages 11-21.
    10. Laurie André & Stéphane Abanades, 2020. "Recent Advances in Thermochemical Energy Storage via Solid–Gas Reversible Reactions at High Temperature," Energies, MDPI, vol. 13(22), pages 1-23, November.
    11. Kong, Wei, 2025. "Does financial risk exacerbate the risk of low-quality green innovation?," Pacific-Basin Finance Journal, Elsevier, vol. 90(C).
    12. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    13. Wang, Wenqing & Kolditz, Olaf & Nagel, Thomas, 2017. "Parallel finite element modelling of multi-physical processes in thermochemical energy storage devices," Applied Energy, Elsevier, vol. 185(P2), pages 1954-1964.
    14. Zheng, Mingbo & Zhang, Xinyu, 2025. "Digitalization and renewable energy development: Analysis based on cross-country panel data," Energy, Elsevier, vol. 319(C).
    15. Li Bo & Tan Chao & Dai Chengbo & Tan Haobo & Xu Yunbao, 2024. "Environmental Innovation and Green Entrepreneurship in China: a Non-linear Perspective," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 16206-16226, December.
    16. Song, Yang & Zhang, Zhiyuan & Sahut, Jean-Michel & Rubin, Ofir, 2023. "Incentivizing green technology innovation to confront sustainable development," Technovation, Elsevier, vol. 126(C).
    17. Chen, Hong & Hu, Shangui & Cai, Yuqing, 2024. "Driving effect of fintech on firm green innovation in China's strategic emerging industries: The mediating role of digital transformation," International Review of Economics & Finance, Elsevier, vol. 96(PA).
    18. Li, Biao & Xie, Bai-Chen & Yu, Xiao-Chen & She, Zhen-Yu & Hu, Wenhao, 2025. "Does the incentive policy for renewable energy grid connection affect the technical efficiency of power grid companies? Empirical analysis based on China and Japan," Economic Analysis and Policy, Elsevier, vol. 85(C), pages 28-47.
    19. Timothy Praditia & Thilo Walser & Sergey Oladyshkin & Wolfgang Nowak, 2020. "Improving Thermochemical Energy Storage Dynamics Forecast with Physics-Inspired Neural Network Architecture," Energies, MDPI, vol. 13(15), pages 1-26, July.
    20. Pahlevaninezhad, Masoud & Davazdah Emami, Mohsen & Panjepour, Masoud, 2014. "The effects of kinetic parameters on combustion characteristics in a sintering bed," Energy, Elsevier, vol. 73(C), pages 160-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:1324-1340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.