IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v44y2012i1p1028-1034.html
   My bibliography  Save this article

Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat

Author

Listed:
  • Shkatulov, Alexandr
  • Ryu, Junichi
  • Kato, Yukitaka
  • Aristov, Yury

Abstract

New composite material for storage and transformation of heat of a temperature range of 250–350 °C has been synthesized by precipitation of magnesium hydroxide Mg(OH)2 in the pores of expanded vermiculite. The hydroxide is stabilized inside the pores as irregular sticks of 1–3 μm in size across flats of the base and about 30 μm in length. The temperature of decomposition of the confined hydroxide is found to be by some 50 °C lower than that of the bulk one as revealed by both TG and DSC techniques. One possible reason of this finding is a significant acceleration of the decomposition reaction of the confined hydroxide as revealed from comparative kinetic tests in the temperature range of 260–300 °C. The maximal heat storage capacity is 540 kJ per kg of the composite with the hydroxide content of 67.4 mass. % that is larger than the heat of melting for promising phase change materials. Further study of the new composite material for storage of middle temperature heat could be of high interest to find out reasons of the decomposition temperature reduction in order to use this effect for harmonizing the reaction temperature with the temperature level of heat to be stored.

Suggested Citation

  • Shkatulov, Alexandr & Ryu, Junichi & Kato, Yukitaka & Aristov, Yury, 2012. "Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat," Energy, Elsevier, vol. 44(1), pages 1028-1034.
  • Handle: RePEc:eee:energy:v:44:y:2012:i:1:p:1028-1034
    DOI: 10.1016/j.energy.2012.04.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421200343X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2012.04.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cabeza, L.F. & Castell, A. & Barreneche, C. & de Gracia, A. & Fernández, A.I., 2011. "Materials used as PCM in thermal energy storage in buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1675-1695, April.
    2. Tian, Y. & Zhao, C.Y., 2011. "A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals," Energy, Elsevier, vol. 36(9), pages 5539-5546.
    3. Kato, Y. & Sasaki, Y. & Yoshizawa, Y., 2005. "Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system," Energy, Elsevier, vol. 30(11), pages 2144-2155.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
    2. Han, X.C. & Xu, H.J. & Zhao, C.Y., 2022. "Design and performance evaluation of multi-layered reactor for calcium-based thermochemical heat storage with multi-physics coupling," Renewable Energy, Elsevier, vol. 195(C), pages 1324-1340.
    3. Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
    4. Pan, Zhihao & Zhao, C.Y., 2015. "Dehydration/hydration of MgO/H2O chemical thermal storage system," Energy, Elsevier, vol. 82(C), pages 611-618.
    5. Yannan Zhang & Ruzhu Wang & Tingxian Li & Yanjie Zhao, 2016. "Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage," Energies, MDPI, vol. 9(10), pages 1-15, October.
    6. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    7. Shkatulov, Alexandr & Aristov, Yuri, 2015. "Modification of magnesium and calcium hydroxides with salts: An efficient way to advanced materials for storage of middle-temperature heat," Energy, Elsevier, vol. 85(C), pages 667-676.
    8. Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Lanza, M. & Milone, C., 2016. "Thermochemical performance of carbon nanotubes based hybrid materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 181(C), pages 232-243.
    9. Zhao, Y. & Zhao, C.Y. & Markides, C.N. & Wang, H. & Li, W., 2020. "Medium- and high-temperature latent and thermochemical heat storage using metals and metallic compounds as heat storage media: A technical review," Applied Energy, Elsevier, vol. 280(C).
    10. N'Tsoukpoe, Kokouvi Edem & Restuccia, Giovanni & Schmidt, Thomas & Py, Xavier, 2014. "The size of sorbents in low pressure sorption or thermochemical energy storage processes," Energy, Elsevier, vol. 77(C), pages 983-998.
    11. Pan, Z.H. & Zhao, C.Y., 2017. "Gas–solid thermochemical heat storage reactors for high-temperature applications," Energy, Elsevier, vol. 130(C), pages 155-173.
    12. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    13. Yan, J. & Pan, Z.H. & Zhao, C.Y., 2020. "Experimental study of MgO/Mg(OH)2 thermochemical heat storage with direct heat transfer mode," Applied Energy, Elsevier, vol. 275(C).
    14. Jiang, Feng & Zhang, Lingling & She, Xiaohui & Li, Chuan & Cang, Daqiang & Liu, Xianglei & Xuan, Yimin & Ding, Yulong, 2020. "Skeleton materials for shape-stabilization of high temperature salts based phase change materials: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
    16. Miliozzi, Adio & Chieruzzi, Manila & Torre, Luigi, 2019. "Experimental investigation of a cementitious heat storage medium incorporating a solar salt/diatomite composite phase change material," Applied Energy, Elsevier, vol. 250(C), pages 1023-1035.
    17. Jae Yong Lee & Taesu Yim & Hyouck Ju Kim & Sungkook Hong & Doo Won Seo & Hong Soo Kim, 2019. "Investigation on Long Term Operation of Thermochemical Heat Storage with MgO-Based Composite Honeycombs," Energies, MDPI, vol. 12(7), pages 1-18, April.
    18. Taesu Yim & Hong Soo Kim & Jae Yong Lee, 2018. "Cyclic Assessment of Magnesium Oxide with Additives as a Thermochemical Material to Improve the Mechanical Strength and Chemical Reaction," Energies, MDPI, vol. 11(9), pages 1-15, September.
    19. Emanuela Mastronardo & Yukitaka Kato & Lucio Bonaccorsi & Elpida Piperopoulos & Candida Milone, 2017. "Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH) 2 Hybrid Materials," Energies, MDPI, vol. 10(1), pages 1-16, January.
    20. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    21. Yan, T. & Wang, R.Z. & Li, T.X. & Wang, L.W. & Fred, Ishugah T., 2015. "A review of promising candidate reactions for chemical heat storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 13-31.
    22. Piperopoulos, Elpida & Mastronardo, Emanuela & Fazio, Marianna & Lanza, Maurizio & Galvagno, Signorino & Milone, Candida, 2018. "Enhancing the volumetric heat storage capacity of Mg(OH)2 by the addition of a cationic surfactant during its synthesis," Applied Energy, Elsevier, vol. 215(C), pages 512-522.
    23. Müller, Danny & Knoll, Christian & Gravogl, Georg & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Schreiner, Manfred & Harasek, Michael & Hradil, Klaudia & Werner, An, 2019. "Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities," Applied Energy, Elsevier, vol. 253(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    2. Knoll, Christian & Müller, Danny & Artner, Werner & Welch, Jan M. & Werner, Andreas & Harasek, Michael & Weinberger, Peter, 2017. "Probing cycle stability and reversibility in thermochemical energy storage – CaC2O4·H2O as perfect match?," Applied Energy, Elsevier, vol. 187(C), pages 1-9.
    3. Parameshwaran, R. & Kalaiselvam, S., 2013. "Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings," Energy, Elsevier, vol. 59(C), pages 194-214.
    4. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Müller, Danny & Knoll, Christian & Gravogl, Georg & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Schreiner, Manfred & Harasek, Michael & Hradil, Klaudia & Werner, An, 2019. "Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    7. Chandel, S.S. & Agarwal, Tanya, 2017. "Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 581-596.
    8. Aramesh, M. & Shabani, B., 2022. "Metal foam-phase change material composites for thermal energy storage: A review of performance parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    10. Lukas Hegner & Stefan Krimmel & Rebecca Ravotti & Dominic Festini & Jörg Worlitschek & Anastasia Stamatiou, 2021. "Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material," Energies, MDPI, vol. 14(2), pages 1-26, January.
    11. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
    12. Xu, Yang & Li, Ming-Jia & Zheng, Zhang-Jing & Xue, Xiao-Dai, 2018. "Melting performance enhancement of phase change material by a limited amount of metal foam: Configurational optimization and economic assessment," Applied Energy, Elsevier, vol. 212(C), pages 868-880.
    13. Xu, Yang & Ren, Qinlong & Zheng, Zhang-Jing & He, Ya-Ling, 2017. "Evaluation and optimization of melting performance for a latent heat thermal energy storage unit partially filled with porous media," Applied Energy, Elsevier, vol. 193(C), pages 84-95.
    14. Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
    15. José A. Tenorio & José Sánchez-Ramos & Álvaro Ruiz-Pardo & Servando Álvarez & Luisa F. Cabeza, 2015. "Energy Efficiency Indicators for Assessing Construction Systems Storing Renewable Energy: Application to Phase Change Material-Bearing Façades," Energies, MDPI, vol. 8(8), pages 1-20, August.
    16. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    17. Zhou, D. & Zhao, C.Y. & Tian, Y., 2012. "Review on thermal energy storage with phase change materials (PCMs) in building applications," Applied Energy, Elsevier, vol. 92(C), pages 593-605.
    18. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.
    19. Yuan, Yanping & Zhang, Nan & Li, Tianyu & Cao, Xiaoling & Long, Weiyue, 2016. "Thermal performance enhancement of palmitic-stearic acid by adding graphene nanoplatelets and expanded graphite for thermal energy storage: A comparative study," Energy, Elsevier, vol. 97(C), pages 488-497.
    20. Mahdi, Jasim M. & Mohammed, Hayder I. & Hashim, Emad T. & Talebizadehsardari, Pouyan & Nsofor, Emmanuel C., 2020. "Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system," Applied Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:44:y:2012:i:1:p:1028-1034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.