IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v286y2024ics0360544223029961.html
   My bibliography  Save this article

4E evaluations of salt hydrate-based solar thermochemical heat transformer system used for domestic hot water production

Author

Listed:
  • Li, Wei
  • Markides, Christos N.
  • Zeng, Min
  • Peng, Jian

Abstract

A critical step toward the widespread use of renewables is the development of effective energy storage technology. An impressive solution for energy storage and heat upgrade is the salt hydrate-based solar thermochemical heat transformer (THT). The article aims at the temperature lift effects of pressurization-assisted THT systems employing different salts to fulfill the heat requirements of domestic hot water (DHW) generation. To grasp the sustainability of the GJ-level THT systems, energy, exergy, economic, and environmental (4E) assessments are performed under various working conditions. Results manifest that the majority of THT systems enable discharging temperatures (Tdis) to surpass 65 °C, matching regular DHW production. Tdis can be further boosted by the two-stage pressurization whereas at the expense of lowering thermodynamic properties. The SrBr2-based system almost exhibits the best 4E performances with a Tdis of 74.3 °C, although its levelized energy cost (LEC) of 0.1162 $/kWh is slightly higher than that of the LiOH-based system (0.1147 $/kWh). Both systems yield great useable heat, up to 11,667 MJ and 11,140 MJ, respectively, with maximum exergy efficiency of 89.16 % and 63.41 %. Albeit capable of generating higher temperature DHW (≥90 °C), the useable heat and thermodynamic performances of the FeCl2 and CaCl2 based systems are unsatisfactory. By contrast, the K2CO3 and LiOH based systems render higher temperature DHW while ensuring acceptable thermodynamic properties and useable heat. Targeting the regular and higher temperature DHW productions, the lowest CO2 emissions are separately achieved by the SrBr2 and LiCl based systems, i.e., 15 kg/MWh and 56.2 kg/MWh; and the former shows the slowest growth rate in carbon emission with increased Tdis. Augmenting solar irradiation and duration contributes to reducing LEC, and the ideal operating conditions in thermo-economic performance may differ from system to system.

Suggested Citation

  • Li, Wei & Markides, Christos N. & Zeng, Min & Peng, Jian, 2024. "4E evaluations of salt hydrate-based solar thermochemical heat transformer system used for domestic hot water production," Energy, Elsevier, vol. 286(C).
  • Handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029961
    DOI: 10.1016/j.energy.2023.129602
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223029961
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:286:y:2024:i:c:s0360544223029961. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.