IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p444-d1020684.html
   My bibliography  Save this article

Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage

Author

Listed:
  • Ahmed Rezk

    (Energy and Bioproducts Research Institute (EBRI), College of Engineering and Physical Science, Aston University, Birmingham B4 7ET, UK)

  • Abdul Ghani Olabi

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Abdul Hai Alami

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Ali Radwan

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Mechanical Power Engineering Department, Mansoura University, Mansoura 35516, Egypt)

  • Hasan Demir

    (Department of Chemical Engineering, Osmaniye Korkut Ata University, 80000 Osmaniye, Turkey)

  • Shek Mohammod Atiqure Rahman

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates)

  • Sheikh Khaleduzzaman Shah

    (Renewable Energy and Energy Efficiency Group, Department of Infrastructure Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia)

  • Mohammad Ali Abdelkareem

    (Sustainable Energy & Power Systems Research Centre, RISE, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
    Chemical Engineering Department, Minia University, Minya 61519, Egypt)

Abstract

Adsorption heat storage is the most feasible technology for heating decarbonization, which can store large quantities of waste and renewable heat for an exceptionally long time. However, utilizing adsorption heat storage in geographical locations with sub-zero ambient conditions is challenging. Therefore, this paper experimentally investigates the use of ethanol as a working fluid paired with silica gel for adsorption heat storage and utilizes sub-zero ambient as the heat source. The heat storage characteristics, heat charging/discharging cyclic performance, and energy conversion performance via exergy analysis were determined under realistic operating conditions and benchmarked against the widely investigated silica gel/water. Ethanol adsorbate was successfully utilized as a working fluid to employ the evaporators operating under sub-zero ambient conditions. Silica gel/ethanol showed the most significant net cyclic uptake, twice that of silica gel/water. However, the physical characteristics of ethanol molecules led to a degree of non-desorbed fluid, which hampered such potential to store 18.08 kJ/kg ads under a sub-zero evaporator temperature and 24.84 kJ/kg ads for an above-zero evaporator temperature compared to silica gel of 155.12 kJ/kg ads operating an above-zero evaporator temperature. On the other hand, silica gel/ethanol showed the fastest heat charging/discharging rate that can shorten the cycle time by 45%. The major contributor to exergy destruction was the exergy transferred by charging heat, which was five times the discharging heat due to the high charging temperature.

Suggested Citation

  • Ahmed Rezk & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Hasan Demir & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage," Energies, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:444-:d:1020684
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/444/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/444/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    2. Rezk, Ahmed & AL-Dadah, Raya & Mahmoud, Saad & Elsayed, Ahmed, 2013. "Investigation of Ethanol/metal organic frameworks for low temperature adsorption cooling applications," Applied Energy, Elsevier, vol. 112(C), pages 1025-1031.
    3. Adeel ur Rehman & Bhajan Lal, 2022. "Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    4. Amirhossein Banaei & Amir Zanj, 2021. "A Review on the Challenges of Using Zeolite 13X as Heat Storage Systems for the Residential Sector," Energies, MDPI, vol. 14(23), pages 1-14, December.
    5. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    6. Björn Nienborg & Tobias Helling & Dominik Fröhlich & Rafael Horn & Gunther Munz & Peter Schossig, 2018. "Closed Adsorption Heat Storage—A Life Cycle Assessment on Material and Component Levels," Energies, MDPI, vol. 11(12), pages 1-16, December.
    7. Elham Abohamzeh & Georg Frey, 2022. "Numerical Investigation of the Adsorption Process of Zeolite/Water in a Thermochemical Reactor for Seasonal Heat Storage," Energies, MDPI, vol. 15(16), pages 1-15, August.
    8. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    3. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    4. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    5. Böhm, Hans & Lindorfer, Johannes, 2019. "Techno-economic assessment of seasonal heat storage in district heating with thermochemical materials," Energy, Elsevier, vol. 179(C), pages 1246-1264.
    6. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Elsayed, Ahmed & Elsayed, Eman & AL-Dadah, Raya & Mahmoud, Saad & Elshaer, Amr & Kaialy, Waseem, 2017. "Thermal energy storage using metal–organic framework materials," Applied Energy, Elsevier, vol. 186(P3), pages 509-519.
    8. Yan, T. & Wang, R.Z. & Li, T.X., 2018. "Experimental investigation on thermochemical heat storage using manganese chloride/ammonia," Energy, Elsevier, vol. 143(C), pages 562-574.
    9. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2022. "Salt hydrate–based gas-solid thermochemical energy storage: Current progress, challenges, and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Geilfuß, Kristina & Dawoud, Belal, 2020. "Analytical investigation of a zeolite-NaY-water adsorption heat and cold storage and its integration into a steam power process," Energy, Elsevier, vol. 195(C).
    11. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    12. Xu, S.Z. & Wang, R.Z. & Wang, L.W. & Zhu, J., 2019. "Performance characterizations and thermodynamic analysis of magnesium sulfate-impregnated zeolite 13X and activated alumina composite sorbents for thermal energy storage," Energy, Elsevier, vol. 167(C), pages 889-901.
    13. Henninger, Stefan K. & Ernst, Sebastian-Johannes & Gordeeva, Larisa & Bendix, Phillip & Fröhlich, Dominik & Grekova, Alexandra D. & Bonaccorsi, Lucio & Aristov, Yuri & Jaenchen, Jochen, 2017. "New materials for adsorption heat transformation and storage," Renewable Energy, Elsevier, vol. 110(C), pages 59-68.
    14. Treier, Matthias S. & Desai, Aditya & Schmidt, Ferdinand P., 2020. "Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage," Energy, Elsevier, vol. 194(C).
    15. Chen, Ziwei & Zhang, Yanan & Zhang, Yong & Su, Yuehong & Riffat, Saffa, 2023. "A study on vermiculite-based salt mixture composite materials for low-grade thermochemical adsorption heat storage," Energy, Elsevier, vol. 278(PB).
    16. Askalany, Ahmed A. & Ernst, Sebastian-Johannes & Hügenell, Philipp P.C. & Bart, Hans-Jörg & Henninger, Stefan K. & Alsaman, Ahmed S., 2017. "High potential of employing bentonite in adsorption cooling systems driven by low grade heat source temperatures," Energy, Elsevier, vol. 141(C), pages 782-791.
    17. Jung-Gil Lee & Kyung Jin Bae & Oh Kyung Kwon, 2020. "Performance Investigation of a Two-Bed Type Adsorption Chiller with Various Adsorbents," Energies, MDPI, vol. 13(10), pages 1-16, May.
    18. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    19. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    20. Yang, Jiangming & Wu, Huijun & Xu, Xinhua & Huang, Gongsheng & Xu, Tao & Guo, Sitong & Liang, Yuying, 2019. "Numerical and experimental study on the thermal performance of aerogel insulating panels for building energy efficiency," Renewable Energy, Elsevier, vol. 138(C), pages 445-457.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:444-:d:1020684. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.