IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v194y2020ics036054421932585x.html
   My bibliography  Save this article

Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage

Author

Listed:
  • Treier, Matthias S.
  • Desai, Aditya
  • Schmidt, Ferdinand P.

Abstract

Storage of thermal energy can be important for compensating the mismatch between demand and supply of energy, especially due to fluctuating renewable energy sources. Within this study, two different system concepts of thermal energy storage involving sorption effects are analysed in a simulation study with the aim of increasing storage efficiency and storage density compared to known systems. Both systems indicate a possible benefit in energy density and storage efficiency but it is also analysed how the choice of system boundary and temperature requirements of the use case influence these two figures of merit.

Suggested Citation

  • Treier, Matthias S. & Desai, Aditya & Schmidt, Ferdinand P., 2020. "Comparison of storage density and efficiency for cascading adsorption heat storage and sorption assisted water storage," Energy, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054421932585x
    DOI: 10.1016/j.energy.2019.116890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421932585X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    2. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    3. Wittstadt, Ursula & Füldner, Gerrit & Laurenz, Eric & Warlo, Alexander & Große, André & Herrmann, Ralph & Schnabel, Lena & Mittelbach, Walter, 2017. "A novel adsorption module with fiber heat exchangers: Performance analysis based on driving temperature differences," Renewable Energy, Elsevier, vol. 110(C), pages 154-161.
    4. Hedegaard, Karsten & Mathiesen, Brian Vad & Lund, Henrik & Heiselberg, Per, 2012. "Wind power integration using individual heat pumps – Analysis of different heat storage options," Energy, Elsevier, vol. 47(1), pages 284-293.
    5. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    6. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    7. Frazzica, Andrea & Freni, Angelo, 2017. "Adsorbent working pairs for solar thermal energy storage in buildings," Renewable Energy, Elsevier, vol. 110(C), pages 87-94.
    8. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Man & Wang, Jia & Kong, Xiangfei & Suo, Hanxiao & Zheng, Wandong & Li, Han, 2023. "Experimental evaluation of the cascaded energy storage radiator for constructing indoor thermal environment in winter," Applied Energy, Elsevier, vol. 332(C).
    2. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    2. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    3. Rongxiang Yuan & Jun Ye & Jiazhi Lei & Timing Li, 2016. "Integrated Combined Heat and Power System Dispatch Considering Electrical and Thermal Energy Storage," Energies, MDPI, vol. 9(6), pages 1-17, June.
    4. Gbenou, Tadagbe Roger Sylvanus & Fopah-Lele, Armand & Wang, Kejian, 2022. "Macroscopic and microscopic investigations of low-temperature thermochemical heat storage reactors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    5. Kuznik, Frédéric & Johannes, Kevyn & Obrecht, Christian & David, Damien, 2018. "A review on recent developments in physisorption thermal energy storage for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 576-586.
    6. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    7. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    8. Chen, Yongbao & Chen, Zhe & Xu, Peng & Li, Weilin & Sha, Huajing & Yang, Zhiwei & Li, Guowen & Hu, Chonghe, 2019. "Quantification of electricity flexibility in demand response: Office building case study," Energy, Elsevier, vol. 188(C).
    9. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    10. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    11. Lehmann, Christoph & Beckert, Steffen & Gläser, Roger & Kolditz, Olaf & Nagel, Thomas, 2017. "Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications," Applied Energy, Elsevier, vol. 185(P2), pages 1965-1970.
    12. Mohamed Zbair & Simona Bennici, 2021. "Survey Summary on Salts Hydrates and Composites Used in Thermochemical Sorption Heat Storage: A Review," Energies, MDPI, vol. 14(11), pages 1-33, May.
    13. Fumey, B. & Weber, R. & Baldini, L., 2019. "Sorption based long-term thermal energy storage – Process classification and analysis of performance limitations: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 57-74.
    14. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
    15. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    16. Fumey, Benjamin & Weber, Robert & Baldini, Luca, 2023. "Heat transfer constraints and performance mapping of a closed liquid sorption heat storage process," Applied Energy, Elsevier, vol. 335(C).
    17. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    18. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    19. Ahmed Rezk & Abdul Ghani Olabi & Abdul Hai Alami & Ali Radwan & Hasan Demir & Shek Mohammod Atiqure Rahman & Sheikh Khaleduzzaman Shah & Mohammad Ali Abdelkareem, 2022. "Experimental Study on Utilizing Silica Gel with Ethanol and Water for Adsorption Heat Storage," Energies, MDPI, vol. 16(1), pages 1-15, December.
    20. N’Tsoukpoe, Kokouvi Edem & Osterland, Thomas & Opel, Oliver & Ruck, Wolfgang K.L., 2016. "Cascade thermochemical storage with internal condensation heat recovery for better energy and exergy efficiencies," Applied Energy, Elsevier, vol. 181(C), pages 562-574.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:194:y:2020:i:c:s036054421932585x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.