IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2020-d347339.html
   My bibliography  Save this article

Open-Source Implementation and Validation of a 3D Inverse Design Method for Francis Turbine Runners

Author

Listed:
  • Sebastián Leguizamón

    (Laboratory for Hydraulic Machines, École Polytechnique Fédérale de Lausanne (EPFL), Avenue de Cour 33 bis, 1007 Lausanne, Switzerland)

  • François Avellan

    (Laboratory for Hydraulic Machines, École Polytechnique Fédérale de Lausanne (EPFL), Avenue de Cour 33 bis, 1007 Lausanne, Switzerland)

Abstract

The hydraulic design of Francis turbines and pump-turbines is an expensive project-specific engineering effort that typically involves a direct iterative exploration of the design space. An inverse design method for turbomachinery has been previously introduced in the literature, and several recent applications have demonstrated its advantages; however, only a commercial implementation of the method is currently available. In this work, an open-source implementation of the inverse design method is introduced. First, the governing equations in cylindrical and curvilinear coordinate systems are derived, consolidating the somewhat inconsistent formulations that are available in the literature. Then, a convergence analysis of the method is performed in order to characterize the behavior of the discretization error and deduce the mesh resolution requirements. A validation of the method output with respect to high-fidelity computational fluid dynamics simulations is then presented; it is demonstrated that the velocity fields are well predicted, the pressure distribution on the blades is reasonably well approximated, and the flow angular momentum extraction is achieved in the prescribed manner. Possible improvements to the open-source implementation of the method are discussed.

Suggested Citation

  • Sebastián Leguizamón & François Avellan, 2020. "Open-Source Implementation and Validation of a 3D Inverse Design Method for Francis Turbine Runners," Energies, MDPI, vol. 13(8), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2020-:d:347339
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2020/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2020/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Yang & Benqing Liu & Ruofu Xiao, 2019. "Three-Dimensional Inverse Design Method for Hydraulic Machinery," Energies, MDPI, vol. 12(17), pages 1-19, August.
    2. Zhu, Baoshan & Wang, Xuhe & Tan, Lei & Zhou, Dongyue & Zhao, Yue & Cao, Shuliang, 2015. "Optimization design of a reversible pump–turbine runner with high efficiency and stability," Renewable Energy, Elsevier, vol. 81(C), pages 366-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Chen & Jianxu Zhou & Bryan Karney & Qiang Guo & Jian Zhang, 2022. "Analytical Implementation and Prediction of Hydraulic Characteristics for a Francis Turbine Runner Operated at BEP," Sustainability, MDPI, vol. 14(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    2. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    3. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    4. Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
    5. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    6. Zhang, Xinbiao & Xie, Yudong & Han, Jiazhen & Wang, Yong, 2022. "Design of control valve with low energy consumption based on Isight platform," Energy, Elsevier, vol. 239(PD).
    7. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    8. Zijie Wang & Baoshan Zhu & Xuhe Wang & Daqing Qin, 2017. "Pressure Fluctuations in the S-Shaped Region of a Reversible Pump-Turbine," Energies, MDPI, vol. 10(1), pages 1-13, January.
    9. Wei Yang & Benqing Liu & Ruofu Xiao, 2019. "Three-Dimensional Inverse Design Method for Hydraulic Machinery," Energies, MDPI, vol. 12(17), pages 1-19, August.
    10. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    11. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    12. Linhai Liu & Baoshan Zhu & Li Bai & Xiaobing Liu & Yue Zhao, 2017. "Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization," Energies, MDPI, vol. 10(8), pages 1-16, August.
    13. Gao, Xueping & Tian, Ye & Sun, Bowen, 2018. "Multi-objective optimization design of bidirectional flow passage components using RSM and NSGA II: A case study of inlet/outlet diffusion segment in pumped storage power station," Renewable Energy, Elsevier, vol. 115(C), pages 999-1013.
    14. Li, Xiaojun & Chen, Bo & Luo, Xianwu & Zhu, Zuchao, 2020. "Effects of flow pattern on hydraulic performance and energy conversion characterisation in a centrifugal pump," Renewable Energy, Elsevier, vol. 151(C), pages 475-487.
    15. Zhe Ma & Baoshan Zhu & Cong Rao & Yonghong Shangguan, 2019. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner," Energies, MDPI, vol. 12(2), pages 1-20, January.
    16. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    17. Hu, Zanao & Cheng, Yongguang & Liu, Demin & Chen, Hongyu & Ji, Bin & Ding, Jinghuan, 2023. "Broadening the operating range of pump-turbine to deep-part load by runner optimization," Renewable Energy, Elsevier, vol. 207(C), pages 73-88.
    18. Yonglin Qin & Deyou Li & Hongjie Wang & Xianzhu Wei, 2023. "Optimization of Setting Angle Distribution to Suppress Hump Characteristic in Pump Turbine," Energies, MDPI, vol. 16(5), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2020-:d:347339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.