IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i1p96-d87801.html
   My bibliography  Save this article

Pressure Fluctuations in the S-Shaped Region of a Reversible Pump-Turbine

Author

Listed:
  • Zijie Wang

    (Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China)

  • Baoshan Zhu

    (Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China)

  • Xuhe Wang

    (Department of Thermal Engineering, State Key Laboratory of Hydro Science and Engineering, Tsinghua University, Beijing 100084, China)

  • Daqing Qin

    (Harbin Institute of Large Electrical Machinery, Harbin 150040, China)

Abstract

Numerical simulations were performed to investigate pressure fluctuations in the S-shaped region of a pump-turbine model. Analyses focused on pressure fluctuations in the draft tube and in the gap between the guide vanes and runner. Calculations were made under six different operating conditions with a constant guide vane opening, and the best efficiency point, runaway point, and low-discharge point in the turbine brake zone were determined. The simulated results were compared with experimental measurements. In the draft tube, a twin vortex rope was observed. In the gap between the guide vanes and runner, a low frequency component was captured at both the runaway and low-discharge points in the turbine brake zone, which rotated at 65% of the runner frequency. This low frequency component was induced by the rotating stall phenomenon. At the runaway point, a single stall cell was found in the gap between the guide vanes and runner, while at the low-discharge point, four stall cells were observed.

Suggested Citation

  • Zijie Wang & Baoshan Zhu & Xuhe Wang & Daqing Qin, 2017. "Pressure Fluctuations in the S-Shaped Region of a Reversible Pump-Turbine," Energies, MDPI, vol. 10(1), pages 1-13, January.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:96-:d:87801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/1/96/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/1/96/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zuo, Zhigang & Fan, Honggang & Liu, Shuhong & Wu, Yulin, 2016. "S-shaped characteristics on the performance curves of pump-turbines in turbine mode – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 836-851.
    2. Zhu, Baoshan & Wang, Xuhe & Tan, Lei & Zhou, Dongyue & Zhao, Yue & Cao, Shuliang, 2015. "Optimization design of a reversible pump–turbine runner with high efficiency and stability," Renewable Energy, Elsevier, vol. 81(C), pages 366-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Linhai Liu & Baoshan Zhu & Li Bai & Xiaobing Liu & Yue Zhao, 2017. "Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization," Energies, MDPI, vol. 10(8), pages 1-16, August.
    2. Jiawei Ye & Wei Zeng & Zhigao Zhao & Jiebin Yang & Jiandong Yang, 2020. "Optimization of Pump Turbine Closing Operation to Minimize Water Hammer and Pulsating Pressures During Load Rejection," Energies, MDPI, vol. 13(4), pages 1-18, February.
    3. Jianyong Hu & Qingbo Wang & Zhenzhu Meng & Hongge Song & Bowen Chen & Hui Shen, 2023. "Numerical Study of the Internal Fluid Dynamics of Draft Tube in Seawater Pumped Storage Hydropower Plant," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    4. Jianzhong Zhou & Zhigao Zhao & Chu Zhang & Chaoshun Li & Yanhe Xu, 2017. "A Real-Time Accurate Model and Its Predictive Fuzzy PID Controller for Pumped Storage Unit via Error Compensation," Energies, MDPI, vol. 11(1), pages 1-24, December.
    5. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    6. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    7. Zhang, Yuning & Zheng, Xianghao & Li, Jinwei & Du, Xiaoze, 2019. "Experimental study on the vibrational performance and its physical origins of a prototype reversible pump turbine in the pumped hydro energy storage power station," Renewable Energy, Elsevier, vol. 130(C), pages 667-676.
    8. Rui Xiong & Hailong Li & Xuan Zhou, 2017. "Advanced Energy Storage Technologies and Their Applications (AESA2017)," Energies, MDPI, vol. 10(9), pages 1-3, September.
    9. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    10. Lu, Jie & Qian, Zhongdong & Lee, Young-Ho, 2021. "Numerical investigation of unsteady characteristics of a pump turbine under runaway condition," Renewable Energy, Elsevier, vol. 169(C), pages 905-924.
    11. Binama, Maxime & Kan, Kan & Chen, Hui-Xiang & Zheng, Yuan & Zhou, Daqing & Su, Wen-Tao & Muhirwa, Alexis & Ntayomba, James, 2021. "Flow instability transferability characteristics within a reversible pump turbine (RPT) under large guide vane opening (GVO)," Renewable Energy, Elsevier, vol. 179(C), pages 285-307.
    12. Jianzhong Zhou & Yanhe Xu & Yang Zheng & Yuncheng Zhang, 2017. "Optimization of Guide Vane Closing Schemes of Pumped Storage Hydro Unit Using an Enhanced Multi-Objective Gravitational Search Algorithm," Energies, MDPI, vol. 10(7), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    2. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    3. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    4. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    5. Wei Yang & Benqing Liu & Ruofu Xiao, 2019. "Three-Dimensional Inverse Design Method for Hydraulic Machinery," Energies, MDPI, vol. 12(17), pages 1-19, August.
    6. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    7. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    8. Fu, Xiaolong & Li, Deyou & Wang, Hongjie & Zhang, Guanghui & Li, Zhenggui & Wei, Xianzhu, 2020. "Numerical simulation of the transient flow in a pump-turbine during load rejection process with special emphasis on hydraulic acoustic effect," Renewable Energy, Elsevier, vol. 155(C), pages 1127-1138.
    9. Huang, Yifan & Yang, Weijia & Zhao, Zhigao & Han, Wenfu & Li, Yulan & Yang, Jiandong, 2023. "Dynamic modeling and favorable speed command of variable-speed pumped-storage unit during power regulation," Renewable Energy, Elsevier, vol. 206(C), pages 769-783.
    10. Zhao, Ziwen & Yuan, Yichen & He, Mengjiao & Jurasz, Jakub & Wang, Jianan & Egusquiza, Mònica & Egusquiza, Eduard & Xu, Beibei & Chen, Diyi, 2022. "Stability and efficiency performance of pumped hydro energy storage system for higher flexibility," Renewable Energy, Elsevier, vol. 199(C), pages 1482-1494.
    11. Liu, Baonan & Zhou, Jianzhong & Xu, Yanhe & Lai, Xinjie & Shi, Yousong & Li, Mengyao, 2022. "An optimization decision-making framework for the optimal operation strategy of pumped storage hydropower system under extreme conditions," Renewable Energy, Elsevier, vol. 182(C), pages 254-273.
    12. Rezghi, Ali & Riasi, Alireza & Tazraei, Pedram, 2020. "Multi-objective optimization of hydraulic transient condition in a pump-turbine hydropower considering the wicket-gates closing law and the surge tank position," Renewable Energy, Elsevier, vol. 148(C), pages 478-491.
    13. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang & Yang, Weibin, 2023. "Comprehensive hydraulic performance improvement in a pump-turbine: An experimental investigation," Energy, Elsevier, vol. 284(C).
    14. Linhai Liu & Baoshan Zhu & Li Bai & Xiaobing Liu & Yue Zhao, 2017. "Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization," Energies, MDPI, vol. 10(8), pages 1-16, August.
    15. Binama, Maxime & Su, Wen-Tao & Cai, Wei-Hua & Li, Xiao-Bin & Muhirwa, Alexis & Li, Biao & Bisengimana, Emmanuel, 2019. "Blade trailing edge position influencing pump as turbine (PAT) pressure field under part-load conditions," Renewable Energy, Elsevier, vol. 136(C), pages 33-47.
    16. Lu, Guocheng & Li, Deyou & Zuo, Zhigang & Liu, Shuhong & Wang, Hongjie, 2020. "A boundary vorticity diagnosis of the flows in a model pump-turbine in turbine mode," Renewable Energy, Elsevier, vol. 153(C), pages 1465-1478.
    17. Hu, Jinhong & Zhao, Zhigao & He, Xianghui & Zeng, Wei & Yang, Jiebin & Yang, Jiandong, 2023. "Design techniques for improving energy performance and S-shaped characteristics of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 212(C), pages 333-349.
    18. Hu, Jinhong & Yang, Jiebin & He, Xianghui & Zeng, Wei & Zhao, Zhigao & Yang, Jiandong, 2023. "Transition of amplitude–frequency characteristic in rotor–stator interaction of a pump-turbine with splitter blades," Renewable Energy, Elsevier, vol. 205(C), pages 663-677.
    19. Li, Ruopu & Arzaghi, Ehsan & Abbassi, Rouzbeh & Chen, Diyi & Li, Chunhao & Li, Huanhuan & Xu, Beibei, 2020. "Dynamic maintenance planning of a hydro-turbine in operational life cycle," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Lu, Guocheng & Zuo, Zhigang & Sun, Yuekun & Liu, Demin & Tsujimoto, Yoshinobu & Liu, Shuhong, 2017. "Experimental evidence of cavitation influences on the positive slope on the pump performance curve of a low specific speed model pump-turbine," Renewable Energy, Elsevier, vol. 113(C), pages 1539-1550.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:96-:d:87801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.