IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1863-d344263.html
   My bibliography  Save this article

Virtual Inertia Control of Variable Speed Heat Pumps for the Provision of Frequency Support

Author

Listed:
  • Ismail Ibrahim

    (School of Electrical and Electronics Engineering, University College Dublin, D04V1W8 Dublin, Ireland)

  • Cathal O’Loughlin

    (School of Electrical and Electronics Engineering, University College Dublin, D04V1W8 Dublin, Ireland)

  • Terence O’Donnell

    (School of Electrical and Electronics Engineering, University College Dublin, D04V1W8 Dublin, Ireland)

Abstract

The growth in the integration of converter interfaced renewable energy has reduced the system inertia, which threatens system stability due to high rate of change of frequency (RoCoF) and frequency nadir issues unless steps are taken to mitigate it. There is a need to provide sufficient fast frequency response to maintain adequate inertia in the system. This paper investigates the capabilities of a variable speed heat pump to provide an emulated inertial response. This paper presents a virtual synchronous machine control for a variable speed heat pump that provides support for grid frequency regulation over the inertial response time frame. A small-signal model with the transfer function of the variable speed heat pump is developed to analyse the effectiveness and feasibility of providing virtual inertia at the device and grid level, respectively. Furthermore, the small-signal model is validated using hardware in the loop simulation. Finally, the aggregated frequency response and virtual inertia contribution by a population of the heat pumps are evaluated and quantified in an urban distribution system.

Suggested Citation

  • Ismail Ibrahim & Cathal O’Loughlin & Terence O’Donnell, 2020. "Virtual Inertia Control of Variable Speed Heat Pumps for the Provision of Frequency Support," Energies, MDPI, vol. 13(8), pages 1-22, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1863-:d:344263
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1863/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1863/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dehghanpour, Kaveh & Afsharnia, Saeed, 2015. "Electrical demand side contribution to frequency control in power systems: a review on technical aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1267-1276.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Edoardo Dino & Pietro Catrini & Valeria Palomba & Andrea Frazzica & Antonio Piacentino, 2023. "Promoting the Flexibility of Thermal Prosumers Equipped with Heat Pumps to Support Power Grid Management," Sustainability, MDPI, vol. 15(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dreidy, Mohammad & Mokhlis, H. & Mekhilef, Saad, 2017. "Inertia response and frequency control techniques for renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 144-155.
    2. Hirase, Yuko & Abe, Kensho & Sugimoto, Kazushige & Sakimoto, Kenichi & Bevrani, Hassan & Ise, Toshifumi, 2018. "A novel control approach for virtual synchronous generators to suppress frequency and voltage fluctuations in microgrids," Applied Energy, Elsevier, vol. 210(C), pages 699-710.
    3. Tang, Yi & Li, Feng & Chen, Qian & Li, Mengya & Wang, Qi & Ni, Ming & Chen, Gang, 2018. "Frequency prediction method considering demand response aggregate characteristics and control effects," Applied Energy, Elsevier, vol. 229(C), pages 936-944.
    4. Bey, M. & Hamidat, A. & Benyoucef, B. & Nacer, T., 2016. "Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 333-345.
    5. Nouha Mansouri & Abderezak Lashab & Dezso Sera & Josep M. Guerrero & Adnen Cherif, 2019. "Large Photovoltaic Power Plants Integration: A Review of Challenges and Solutions," Energies, MDPI, vol. 12(19), pages 1-16, October.
    6. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. Rongxiang Zhang & Xiaodong Chu & Wen Zhang & Yutian Liu, 2015. "Active Participation of Air Conditioners in Power System Frequency Control Considering Users’ Thermal Comfort," Energies, MDPI, vol. 8(10), pages 1-24, September.
    8. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    9. Lei Liu & Hidehito Matayoshi & Mohammed Elsayed Lotfy & Manoj Datta & Tomonobu Senjyu, 2018. "Load Frequency Control Using Demand Response and Storage Battery by Considering Renewable Energy Sources," Energies, MDPI, vol. 11(12), pages 1-40, December.
    10. Jaalam, N. & Rahim, N.A. & Bakar, A.H.A. & Tan, ChiaKwang & Haidar, Ahmed M.A., 2016. "A comprehensive review of synchronization methods for grid-connected converters of renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1471-1481.
    11. Ellen Webborn & Robert S. MacKay, 2017. "A Stability Analysis of Thermostatically Controlled Loads for Power System Frequency Control," Complexity, Hindawi, vol. 2017, pages 1-26, December.
    12. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    13. Liu, Zhengguang & Guo, Zhiling & Chen, Qi & Song, Chenchen & Shang, Wenlong & Yuan, Meng & Zhang, Haoran, 2023. "A review of data-driven smart building-integrated photovoltaic systems: Challenges and objectives," Energy, Elsevier, vol. 263(PE).
    14. Hu, Rongchun & Zhang, Dongxu & Gu, Xudong, 2022. "Reliability analysis of a class of stochastically excited nonlinear Markovian jump systems," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    15. Yang, Chao & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Chen, Zhe & Wen, Jinyu & He, Haibo, 2019. "Dynamic event-triggered robust secondary frequency control for islanded AC microgrid," Applied Energy, Elsevier, vol. 242(C), pages 821-836.
    16. Rehman, Obaid Ur & Khan, Shahid A. & Javaid, Nadeem, 2021. "Decoupled building-to-transmission-network for frequency support in PV systems dominated grid," Renewable Energy, Elsevier, vol. 178(C), pages 930-945.
    17. Burger, Scott P. & Luke, Max, 2017. "Business models for distributed energy resources: A review and empirical analysis," Energy Policy, Elsevier, vol. 109(C), pages 230-248.
    18. Malik, Anam & Ravishankar, Jayashri, 2018. "A hybrid control approach for regulating frequency through demand response," Applied Energy, Elsevier, vol. 210(C), pages 1347-1362.
    19. Wang, Yu & Xu, Yan & Tang, Yi, 2019. "Distributed aggregation control of grid-interactive smart buildings for power system frequency support," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    20. Hirase, Y. & Noro, O. & Nakagawa, H. & Yoshimura, E. & Katsura, S. & Abe, K. & Sugimoto, K. & Sakimoto, K., 2018. "Decentralised and interlink-less power interchange among residences in microgrids using virtual synchronous generator control," Applied Energy, Elsevier, vol. 228(C), pages 2437-2447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1863-:d:344263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.