IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p624-d315375.html
   My bibliography  Save this article

Thermal Performance and Comfort Condition Analysis in a Vernacular Building with a Glazed Balcony

Author

Listed:
  • Jorge Fernandes

    (Department of Civil Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal)

  • Raphaele Malheiro

    (Department of Civil Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal)

  • Maria de Fátima Castro

    (Department of Civil Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal)

  • Helena Gervásio

    (Institute for Sustainability and Innovation in Structural Engineering (ISISE), University of Coimbra, University of Coimbra, Faculdade de Ciências e Tecnologia, Rua Luís Reis Santos, Pólo II, 3030-788 Coimbra, Portugal)

  • Sandra Monteiro Silva

    (Department of Civil Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal)

  • Ricardo Mateus

    (Department of Civil Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal)

Abstract

The increase in global environmental problems requires more environmentally efficient construction. Vernacular passive strategies can play an important role in helping reducing energy use and CO 2 emissions related to buildings. This paper studies the use of glazed balconies in the North of Portugal as a strategy to capture solar gains and reduce heat losses. The purpose is understanding thermal performance and comfort conditions provided by this passive heating strategy. The methodology includes objective (short and long-term monitoring), to evaluate the different parameters affecting thermal comfort and air quality, and subjective assessments to assess occupants’ perception regarding thermal sensation. The results show that the use of glazed balconies as a passive heating strategy in a climate with cold winters is viable. During the mid-seasons, the rooms with balcony have adequate comfort conditions. In the heating season, it is possible to achieve comfort conditions in sunny days while in the cooling season there is a risk of overheating. Regarding indoor air quality, carbon dioxide concentrations were low, but the average radon concentration measured was high when the building was unoccupied, rapidly decreasing to acceptable values, during occupation periods when a minimum ventilation rate was promoted. Occupants’ actions were essential to improving building behavior.

Suggested Citation

  • Jorge Fernandes & Raphaele Malheiro & Maria de Fátima Castro & Helena Gervásio & Sandra Monteiro Silva & Ricardo Mateus, 2020. "Thermal Performance and Comfort Condition Analysis in a Vernacular Building with a Glazed Balcony," Energies, MDPI, vol. 13(3), pages 1-29, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:624-:d:315375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/624/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/624/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sayigh, Ali & Marafia, A. Hamid, 1998. "Chapter 2--Vernacular and contemporary buildings in Qatar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 25-37, June.
    2. Gallo, Cettina, 1994. "Bioclimatic architecture," Renewable Energy, Elsevier, vol. 5(5), pages 1021-1027.
    3. Fernandes, Jorge & Mateus, Ricardo & Gervásio, Helena & Silva, Sandra M. & Bragança, Luís, 2019. "Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance," Renewable Energy, Elsevier, vol. 142(C), pages 345-363.
    4. Kimura, Ken-ichi, 1994. "Vernacular technologies applied to modern architecture," Renewable Energy, Elsevier, vol. 5(5), pages 900-907.
    5. Coch, Helena, 1998. "Chapter 4--Bioclimatism in vernacular architecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 2(1-2), pages 67-87, June.
    6. Francesco Asdrubali & Franco Cotana & Antonio Messineo, 2012. "On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period," Energies, MDPI, vol. 5(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catarina Ribeiro & Nuno M. M. Ramos & Inês Flores-Colen, 2020. "A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    2. Raphaele Malheiro & Aurora Morillas & Adriana Ansolin & Jorge Fernandes & Aires Camões & Maria Teresa Amorim & Sandra Monteiro Silva & Ricardo Mateus, 2023. "Thermal Performance and Durability Evaluation of Arundo Donax towards an Improvement in the Knowledge of Sustainable Building Materials," Energies, MDPI, vol. 16(2), pages 1-19, January.
    3. Raphaele Malheiro & Adriana Ansolin & Christiane Guarnier & Jorge Fernandes & Maria Teresa Amorim & Sandra Monteiro Silva & Ricardo Mateus, 2021. "The Potential of the Reed as a Regenerative Building Material—Characterisation of Its Durability, Physical, and Thermal Performances," Energies, MDPI, vol. 14(14), pages 1-19, July.
    4. Ion-Costinel Mareș & Tiberiu Catalina & Marian-Andrei Istrate & Alexandra Cucoș & Tiberius Dicu & Betty Denissa Burghele & Kinga Hening & Lelia Letitia Popescu & Razvan Stefan Popescu, 2021. "Research on Best Solution for Improving Indoor Air Quality and Reducing Energy Consumption in a High-Risk Radon Dwelling from Romania," IJERPH, MDPI, vol. 18(23), pages 1-18, November.
    5. Julia Lima Toroxel & Sandra Monteiro Silva, 2024. "A Review of Passive Solar Heating and Cooling Technologies Based on Bioclimatic and Vernacular Architecture," Energies, MDPI, vol. 17(5), pages 1-28, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    2. Jiang, Wei & Jin, Yang & Liu, Gongliang & Li, Qing & Li, Dong, 2023. "Passive nearly zero energy retrofits of rammed earth rural residential buildings based on energy efficiency and cost-effectiveness analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    3. Francesco Asdrubali & Cinzia Buratti & Franco Cotana & Giorgio Baldinelli & Michele Goretti & Elisa Moretti & Catia Baldassarri & Elisa Belloni & Francesco Bianchi & Antonella Rotili & Marco Vergoni &, 2013. "Evaluation of Green Buildings’ Overall Performance through in Situ Monitoring and Simulations," Energies, MDPI, vol. 6(12), pages 1-23, December.
    4. Elisabete R. Teixeira & Gilberto Machado & Adilson de P. Junior & Christiane Guarnier & Jorge Fernandes & Sandra M. Silva & Ricardo Mateus, 2020. "Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Ariadna Carrobé & Lídia Rincón & Ingrid Martorell, 2021. "Thermal Monitoring and Simulation of Earthen Buildings. A Review," Energies, MDPI, vol. 14(8), pages 1-47, April.
    6. Andrea Alaimo & Antonio Esposito & Alberto Milazzo & Calogero Orlando & Flavio Trentacosti, 2013. "Slotted Blades Savonius Wind Turbine Analysis by CFD," Energies, MDPI, vol. 6(12), pages 1-17, December.
    7. Alexey Maslakov & Ksenia Sotnikova & Gleb Gribovskii & Dmitry Evlanov, 2022. "Thermal Simulation of Ice Cellars as a Basis for Food Security and Energy Sustainability of Isolated Indigenous Communities in the Arctic," Energies, MDPI, vol. 15(3), pages 1-16, January.
    8. Yang, Jianming & Lin, Zhongqi & Wu, Huijun & Chen, Qingchun & Xu, Xinhua & Huang, Gongsheng & Fan, Liseng & Shen, Xujun & Gan, Keming, 2020. "Inverse optimization of building thermal resistance and capacitance for minimizing air conditioning loads," Renewable Energy, Elsevier, vol. 148(C), pages 975-986.
    9. Teresa Gil-Piqueras & Pablo Rodríguez-Navarro, 2021. "Tradition and Sustainability in Vernacular Architecture of Southeast Morocco," Sustainability, MDPI, vol. 13(2), pages 1-18, January.
    10. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    11. Tolulope Dorcas Mobolade & Parastoo Pourvahidi, 2020. "Bioclimatic Approach for Climate Classification of Nigeria," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    12. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    13. Luca Evangelisti & Gabriele Battista & Claudia Guattari & Carmine Basilicata & Roberto De Lieto Vollaro, 2014. "Analysis of Two Models for Evaluating the Energy Performance of Different Buildings," Sustainability, MDPI, vol. 6(8), pages 1-11, August.
    14. Nuri Caglayan, 2023. "The Technical and Economic Assessment of a Solar Rooftop Grid-Connected Photovoltaic System for a Dairy Farm," Energies, MDPI, vol. 16(20), pages 1-20, October.
    15. Anna Laura Pisello & Franco Cotana & Andrea Nicolini & Lucia Brinchi, 2013. "Development of Clay Tile Coatings for Steep-Sloped Cool Roofs," Energies, MDPI, vol. 6(8), pages 1-17, July.
    16. Catarina Ribeiro & Nuno M. M. Ramos & Inês Flores-Colen, 2020. "A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    17. Filippo Sgroi & Salvatore Tudisca & Anna Maria Di Trapani & Riccardo Testa & Riccardo Squatrito, 2014. "Efficacy and Efficiency of Italian Energy Policy: The Case of PV Systems in Greenhouse Farms," Energies, MDPI, vol. 7(6), pages 1-17, June.
    18. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Study on Heat Utilization in an Attached Sunspace in a House with a Central Heating, Ventilation, and Air Conditioning System," Energies, MDPI, vol. 11(5), pages 1-12, May.
    19. Andrea Colantoni & Danilo Monarca & Alvaro Marucci & Massimo Cecchini & Ilaria Zambon & Federico Di Battista & Diego Maccario & Maria Grazia Saporito & Margherita Beruto, 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    20. Widera, Barbara, 2021. "Comparative analysis of user comfort and thermal performance of six types of vernacular dwellings as the first step towards climate resilient, sustainable and bioclimatic architecture in western sub-S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:624-:d:315375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.