IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i15p4050-d1713349.html
   My bibliography  Save this article

An Automated Method of Parametric Thermal Shaping of Complex Buildings with Buffer Spaces in a Moderate Climate

Author

Listed:
  • Jacek Abramczyk

    (Department of Architectural Design and Engineering Graphics, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland)

  • Wiesław Bielak

    (Department of Structural Mechanics, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland)

  • Ewelina Gotkowska

    (Department of Architectural Design and Engineering Graphics, Rzeszow University of Technology, Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland)

Abstract

This article presents a new method of parametric shaping of buildings with buffer spaces characterized by complex forms and effective thermal operation in the moderate climate of the Central Europe Plane. The parameterization of an elaborated thermal qualitative model of buildings with buffer spaces and its configuration based on computer simulations of thermal operation of many discrete models are the specific features of the method. The model uses various original building shapes and a new parametric artificial neural network (a) to automate the calculations and recording of results and (b) to predict a number of new buildings with buffer spaces characterized by effective thermal operation. The configuration of the parametric quantitative model was carried out based on the simulation results of 343 discrete models defined by means of ten independent variables grouping the properties of the building and buffer space related to their forms, materials and air circulation. The analysis performed for the adopted parameter variability ranges indicates a varied impact of these independent variables on the thermal operation of buildings located in a moderate climate. The infiltration and ventilation and physical properties of the windows and walls are the independent variables that most influence the energy savings utilized by the examined buildings with buffer spaces. The optimal values of these variables allow up to 50–60% of the energy supplied by the HVAC system to be saved. The accuracy and universality of the method will continuously be increased in future research by increasing the types and ranges of independent variables.

Suggested Citation

  • Jacek Abramczyk & Wiesław Bielak & Ewelina Gotkowska, 2025. "An Automated Method of Parametric Thermal Shaping of Complex Buildings with Buffer Spaces in a Moderate Climate," Energies, MDPI, vol. 18(15), pages 1-30, July.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4050-:d:1713349
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/15/4050/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/15/4050/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Experimental Analysis of the Thermal Performance of a Sunspace Attached to a House with a Central Air Conditioning System," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    2. Jacek Abramczyk & Wiesław Bielak, 2025. "Parametric Building Envelopes Rationalized in Terms of Their Solar Performance in a Temperate Climate," Energies, MDPI, vol. 18(10), pages 1-20, May.
    3. Liu, Jingxuan & Zang, Haixiang & Zhang, Fengchun & Cheng, Lilin & Ding, Tao & Wei, Zhinong & Sun, Guoqiang, 2023. "A hybrid meteorological data simulation framework based on time-series generative adversarial network for global daily solar radiation estimation," Renewable Energy, Elsevier, vol. 219(P1).
    4. Shekar, Vinay & Abraham, Daniel & Caló, Antonio & Pongrácz, Eva, 2025. "Determining the optimal azimuth for solar-ready buildings: Simulating for maximising the economic value of solar PV installations in Lapland, Finland," Renewable Energy, Elsevier, vol. 241(C).
    5. Uniyal, Sachin & Lodhi, Mahendra Singh & Pawar, Yogita & Thakral, Shreyasee & Garg, Purushottam Kumar & Mukherjee, Sandipan & Nautiyal, Sunil, 2024. "Passive solar heated buildings for enhancing sustainability in the Indian Himalayas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    6. Xiaoliang Wang & Bo Lei & Haiquan Bi & Tao Yu, 2019. "Study on the Thermal Performance of a Hybrid Heat Collecting Facade Used for Passive Solar Buildings in Cold Region," Energies, MDPI, vol. 12(6), pages 1-22, March.
    7. Jorge Fernandes & Raphaele Malheiro & Maria de Fátima Castro & Helena Gervásio & Sandra Monteiro Silva & Ricardo Mateus, 2020. "Thermal Performance and Comfort Condition Analysis in a Vernacular Building with a Glazed Balcony," Energies, MDPI, vol. 13(3), pages 1-29, February.
    8. Maturo, Anthony & Buonomano, Annamaria & Athienitis, Andreas, 2022. "Design for energy flexibility in smart buildings through solar based and thermal storage systems: Modelling, simulation and control for the system optimization," Energy, Elsevier, vol. 260(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    2. Julia Lima Toroxel & Sandra Monteiro Silva & Jorge Fernandes, 2024. "Contribution of Glazed Balconies as a Passive Heating System in Contemporary Buildings in Northern Portugal," Sustainability, MDPI, vol. 16(13), pages 1-29, July.
    3. Ion-Costinel Mareș & Tiberiu Catalina & Marian-Andrei Istrate & Alexandra Cucoș & Tiberius Dicu & Betty Denissa Burghele & Kinga Hening & Lelia Letitia Popescu & Razvan Stefan Popescu, 2021. "Research on Best Solution for Improving Indoor Air Quality and Reducing Energy Consumption in a High-Risk Radon Dwelling from Romania," IJERPH, MDPI, vol. 18(23), pages 1-18, November.
    4. Andrea Frazzica & Valeria Palomba & Angelo Freni, 2023. "Development and Experimental Characterization of an Innovative Tank-in-Tank Hybrid Sensible–Latent Thermal Energy Storage System," Energies, MDPI, vol. 16(4), pages 1-18, February.
    5. Catarina Ribeiro & Nuno M. M. Ramos & Inês Flores-Colen, 2020. "A Review of Balcony Impacts on the Indoor Environmental Quality of Dwellings," Sustainability, MDPI, vol. 12(16), pages 1-19, August.
    6. Raphaele Malheiro & Aurora Morillas & Adriana Ansolin & Jorge Fernandes & Aires Camões & Maria Teresa Amorim & Sandra Monteiro Silva & Ricardo Mateus, 2023. "Thermal Performance and Durability Evaluation of Arundo Donax towards an Improvement in the Knowledge of Sustainable Building Materials," Energies, MDPI, vol. 16(2), pages 1-19, January.
    7. Lin Pan & Sheng Wang & Jiying Wang & Min Xiao & Zhirong Tan, 2022. "Research on Central Air Conditioning Systems and an Intelligent Prediction Model of Building Energy Load," Energies, MDPI, vol. 15(24), pages 1-31, December.
    8. Jorge de Brito & M. Glória Gomes, 2020. "Special Issue “Building Thermal Envelope”," Energies, MDPI, vol. 13(5), pages 1-5, February.
    9. Petrucci, Andrea & Ayevide, Follivi Kloutse & Buonomano, Annamaria & Athienitis, Andreas, 2023. "Development of energy aggregators for virtual communities: The energy efficiency-flexibility nexus for demand response," Renewable Energy, Elsevier, vol. 215(C).
    10. Hernández, José L. & de Miguel, Ignacio & Vélez, Fredy & Vasallo, Ali, 2024. "Challenges and opportunities in European smart buildings energy management: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Jerzy Szyszka, 2020. "Experimental Evaluation of the Heat Balance of an Interactive Glass Wall in A Heating Season," Energies, MDPI, vol. 13(3), pages 1-16, February.
    12. Raphaele Malheiro & Adriana Ansolin & Christiane Guarnier & Jorge Fernandes & Maria Teresa Amorim & Sandra Monteiro Silva & Ricardo Mateus, 2021. "The Potential of the Reed as a Regenerative Building Material—Characterisation of Its Durability, Physical, and Thermal Performances," Energies, MDPI, vol. 14(14), pages 1-19, July.
    13. Zheng, Nan & Zhang, Hanfei & Duan, Liqiang & Wang, Qiushi, 2023. "Comprehensive sustainability assessment of a novel solar-driven PEMEC-SOFC-based combined cooling, heating, power, and storage (CCHPS) system based on life cycle method," Energy, Elsevier, vol. 265(C).
    14. Juha Koskela & Pertti Järventausta, 2023. "Demand Response with Electrical Heating in Detached Houses in Finland and Comparison with BESS for Increasing PV Self-Consumption," Energies, MDPI, vol. 16(1), pages 1-25, January.
    15. Shirazi, Peimaneh & Behzadi, Amirmohammad & Ahmadi, Pouria & Rosen, Marc A. & Sadrizadeh, Sasan, 2024. "Comparison of control strategies for efficient thermal energy storage to decarbonize residential buildings in cold climates: A focus on solar and biomass sources," Renewable Energy, Elsevier, vol. 220(C).
    16. Parsay, Alireza & Gandomzadeh, Mahdi & Yaghoubi, Ali Akbar & Hoorsun, Arman & Gholami, Aslan & Zandi, Majid & Gavagsaz-ghoachani, Roghayeh & Kazem, Hussein A., 2025. "Enhancing photovoltaic efficiency: An in-depth systematic review and critical analysis of dust monitoring, mitigation, and cleaning techniques," Applied Energy, Elsevier, vol. 388(C).
    17. Francesco Gulotta & Edoardo Daccò & Alessandro Bosisio & Davide Falabretti, 2023. "Opening of Ancillary Service Markets to Distributed Energy Resources: A Review," Energies, MDPI, vol. 16(6), pages 1-25, March.
    18. Julia Lima Toroxel & Sandra Monteiro Silva, 2024. "A Review of Passive Solar Heating and Cooling Technologies Based on Bioclimatic and Vernacular Architecture," Energies, MDPI, vol. 17(5), pages 1-28, February.
    19. Liu, Yang & Sun, Yongjun & Gao, Dian-ce & Tan, Jiaqi & Chen, Yuxin, 2024. "Stacked ensemble learning approach for PCM-based double-pipe latent heat thermal energy storage prediction towards flexible building energy," Energy, Elsevier, vol. 294(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:4050-:d:1713349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.