IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7043-d1257660.html
   My bibliography  Save this article

The Technical and Economic Assessment of a Solar Rooftop Grid-Connected Photovoltaic System for a Dairy Farm

Author

Listed:
  • Nuri Caglayan

    (Department of Mechatronics Engineering, Faculty of Engineering, Akdeniz University, Antalya 07070, Türkiye)

Abstract

This study covers the technical and economic analysis of a grid-connected rooftop 216 kWp photovoltaic (PV) system to meet the average annual energy demand of 45,327 kWh of a dairy farm. According to the results of the analysis, an average of 326,819 kWh/year is received at the output of the panel arrays, while 294,838 kWh/year is supplied to the grid. The amount of energy to be received from the grid was found to be 25,013 kWh/year, and the performance ratio of the system was 0.808. The net present value (NPV) of the system was calculated as $36,463.39, and the levelized cost of electricity (LCOE) was calculated as 0.065 $/kWh. Considering that the annual electricity generation amount of the rooftop PV system evaluated within the scope of the study is 315,152 kWh, it is estimated that 127.419 tCO 2 per year of emission release will be prevented annually with the installation of the system.

Suggested Citation

  • Nuri Caglayan, 2023. "The Technical and Economic Assessment of a Solar Rooftop Grid-Connected Photovoltaic System for a Dairy Farm," Energies, MDPI, vol. 16(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7043-:d:1257660
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7043/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7043/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sahay, Amit & Sethi, V.K. & Tiwari, A.C. & Pandey, Mukesh, 2015. "A review of solar photovoltaic panel cooling systems with special reference to Ground coupled central panel cooling system (GC-CPCS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 306-312.
    2. Daher, Daha Hassan & Gaillard, Léon & Amara, Mohamed & Ménézo, Christophe, 2018. "Impact of tropical desert maritime climate on the performance of a PV grid-connected power plant," Renewable Energy, Elsevier, vol. 125(C), pages 729-737.
    3. Sharma, Vikrant & Chandel, S.S., 2013. "Performance analysis of a 190 kWp grid interactive solar photovoltaic power plant in India," Energy, Elsevier, vol. 55(C), pages 476-485.
    4. Francesco Asdrubali & Franco Cotana & Antonio Messineo, 2012. "On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period," Energies, MDPI, vol. 5(6), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saleheen, Mohammed Zeehan & Salema, Arshad Adam & Mominul Islam, Shah Mohammad & Sarimuthu, Charles R. & Hasan, Md Zobaer, 2021. "A target-oriented performance assessment and model development of a grid-connected solar PV (GCPV) system for a commercial building in Malaysia," Renewable Energy, Elsevier, vol. 171(C), pages 371-382.
    2. Srivastava, Raj Shekhar & Kumar, Anuruddh & Thakur, Harishchandra & Vaish, Rahul, 2022. "Solar assisted thermoelectric cooling/heating system for vehicle cabin during parking: A numerical study," Renewable Energy, Elsevier, vol. 181(C), pages 384-403.
    3. Mohanty, Sthitapragyan & Patra, Prashanta K. & Sahoo, Sudhansu S. & Mohanty, Asit, 2017. "Forecasting of solar energy with application for a growing economy like India: Survey and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 539-553.
    4. Andrea Alaimo & Antonio Esposito & Alberto Milazzo & Calogero Orlando & Flavio Trentacosti, 2013. "Slotted Blades Savonius Wind Turbine Analysis by CFD," Energies, MDPI, vol. 6(12), pages 1-17, December.
    5. Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
    6. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    7. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    8. Sharma, Vikrant & Chandel, S.S., 2013. "Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 753-767.
    9. Prakash, Vrishab & Ghosh, Sajal & Kanjilal, Kakali, 2020. "Costs of avoided carbon emission from thermal and renewable sources of power in India and policy implications," Energy, Elsevier, vol. 200(C).
    10. Edalati, Saeed & Ameri, Mehran & Iranmanesh, Masoud, 2015. "Comparative performance investigation of mono- and poly-crystalline silicon photovoltaic modules for use in grid-connected photovoltaic systems in dry climates," Applied Energy, Elsevier, vol. 160(C), pages 255-265.
    11. Deepak Jain Veerendra Kumar & Lelia Deville & Kenneth A. Ritter & Johnathan Richard Raush & Farzad Ferdowsi & Raju Gottumukkala & Terrence Lynn Chambers, 2022. "Performance Evaluation of 1.1 MW Grid-Connected Solar Photovoltaic Power Plant in Louisiana," Energies, MDPI, vol. 15(9), pages 1-21, May.
    12. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    13. Rajput, Pramod & Tiwari, G.N. & Sastry, O.S., 2017. "Thermal modelling with experimental validation and economic analysis of mono crystalline silicon photovoltaic module on the basis of degradation study," Energy, Elsevier, vol. 120(C), pages 731-739.
    14. Mohamed Benghanem & Sofiane Haddad & Ahmed Alzahrani & Adel Mellit & Hamad Almohamadi & Muna Khushaim & Mohamed Salah Aida, 2023. "Evaluation of the Performance of Polycrystalline and Monocrystalline PV Technologies in a Hot and Arid Region: An Experimental Analysis," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    15. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    16. Yadav, Amit Kumar & Sharma, Vikrant & Malik, Hasmat & Chandel, S.S., 2018. "Daily array yield prediction of grid-interactive photovoltaic plant using relief attribute evaluator based Radial Basis Function Neural Network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2115-2127.
    17. Adar, Mustapha & Najih, Youssef & Gouskir, Mohamed & Chebak, Ahmed & Mabrouki, Mustapha & Bennouna, Amin, 2020. "Three PV plants performance analysis using the principal component analysis method," Energy, Elsevier, vol. 207(C).
    18. Amir A. Imam & Yusuf A. Al-Turki & Sreerama Kumar R., 2019. "Techno-Economic Feasibility Assessment of Grid-Connected PV Systems for Residential Buildings in Saudi Arabia—A Case Study," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    19. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    20. Qingsong Ma & Hiroatsu Fukuda & Myonghyang Lee & Takumi Kobatake & Yuko Kuma & Akihito Ozaki & Xindong Wei, 2018. "Study on Heat Utilization in an Attached Sunspace in a House with a Central Heating, Ventilation, and Air Conditioning System," Energies, MDPI, vol. 11(5), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7043-:d:1257660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.