IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i2p430-d309299.html
   My bibliography  Save this article

Development and Assessment of an Over-Expanded Engine to be Used as an Efficiency-Oriented Range Extender for Electric Vehicles

Author

Listed:
  • F. P. Brito

    (Mechanical Engineering and Resource Sustainability Centre (MEtRICs), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal)

  • Jorge Martins

    (Mechanical Engineering and Resource Sustainability Centre (MEtRICs), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal)

  • Francisco Lopes

    (Center for Innovation, Technology and Policy Research (IN+), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, 1349-063 Lisbon, Portugal)

  • Carlos Castro

    (Mechanical Engineering and Resource Sustainability Centre (MEtRICs), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal)

  • Luís Martins

    (Mechanical Engineering and Resource Sustainability Centre (MEtRICs), Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães, Portugal)

  • A. L. N. Moreira

    (Center for Innovation, Technology and Policy Research (IN+), Department of Mechanical Engineering, Instituto Superior Técnico, University of Lisbon, 1349-063 Lisbon, Portugal)

Abstract

A range extender (RE) is a device used in electric vehicles (EVs) to generate electricity on-board, enabling them to significantly reduce the number of required batteries and/or extend the vehicle driving range to allow occasional long trips. In the present work, an efficiency-oriented RE based on a small motorcycle engine modified to the efficient over-expanded cycle, was analyzed, tested and simulated in a driving cycle. The RE was developed to have two points of operation, ECO: 3000 rpm, very high efficiency with only 15 kW; and BOOST: 7000 rpm with 35 kW. While the ECO strategy was a straightforward development for the over-expansion concept (less trapped air and a much higher compression ratio) the BOOST strategy was more complicated to implement and involved the need for throttle operation. Initially the concepts were evaluated in an in-house model and AVL Boost ® (AVL List Gmbh, Graz, Austria), and proved feasible. Then, a BMW K75 engine was altered and tested on a brake dynamometer. The running engine proved the initial concept, by improving the efficiency for the ECO condition in almost 40% in relation to the stock engine and getting well over the required BOOST power, getting to 35 kW, while keeping an efficiency similar to the stock engine at the wide open throttle (WOT). In order to protect the engine during BOOST, the mixture was enriched, while at ECO the mixture was leaned to further improve efficiency. The fixed operation configuration allows the reduction, not only of complexity and cost of the RE, but also the set point optimization for the engine and generator. When integrated as a RE into a typical European light duty vehicle, it provided a breakthrough consumption reduction relatively to existing plug-in hybrid electric vehicles (PHEVs) in the market in the charge sustaining mode. The very high efficiency of the power generation seems to compensate for the loss of efficiency due to the excess electricity production, which must be stored in the battery. The results indicate that indeed it is possible to have an efficient solution, in-line with the electric mobility sustainability paradigm, which can solve most of the shortcomings of current EVs, notably those associated with batteries (range, cost and charging time) in a sustainable way.

Suggested Citation

  • F. P. Brito & Jorge Martins & Francisco Lopes & Carlos Castro & Luís Martins & A. L. N. Moreira, 2020. "Development and Assessment of an Over-Expanded Engine to be Used as an Efficiency-Oriented Range Extender for Electric Vehicles," Energies, MDPI, vol. 13(2), pages 1-18, January.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:430-:d:309299
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/2/430/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/2/430/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cunha, Álvaro & Brito, F.P. & Martins, Jorge & Rodrigues, Nuno & Monteiro, Vitor & Afonso, João L. & Ferreira, Paula, 2016. "Assessment of the use of vanadium redox flow batteries for energy storage and fast charging of electric vehicles in gas stations," Energy, Elsevier, vol. 115(P2), pages 1478-1494.
    2. Redelbach, Martin & Özdemir, Enver Doruk & Friedrich, Horst E., 2014. "Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types," Energy Policy, Elsevier, vol. 73(C), pages 158-168.
    3. Abel Ortego & Alicia Valero & Antonio Valero & Eliette Restrepo, 2018. "Vehicles and Critical Raw Materials: A Sustainability Assessment Using Thermodynamic Rarity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1005-1015, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carvalho, Rui & Martins, Jorge & Pacheco, Nuno & Puga, Hélder & Costa, Joaquim & Vieira, Rui & Goncalves, L.M. & Brito, Francisco P., 2023. "Experimental validation and numerical assessment of a temperature-controlled thermoelectric generator concept aimed at maximizing performance under highly variable thermal load driving cycles," Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    2. Chen, Wei & Kang, Jialun & Shu, Qing & Zhang, Yunsong, 2019. "Analysis of storage capacity and energy conversion on the performance of gradient and double-layered porous electrode in all-vanadium redox flow batteries," Energy, Elsevier, vol. 180(C), pages 341-355.
    3. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    4. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    5. Anamarija Falkoni & Antun Pfeifer & Goran Krajačić, 2020. "Vehicle-to-Grid in Standard and Fast Electric Vehicle Charging: Comparison of Renewable Energy Source Utilization and Charging Costs," Energies, MDPI, vol. 13(6), pages 1-22, March.
    6. António P. Castel-Branco & João P. Ribau & Carla M. Silva, 2015. "Taxi Fleet Renewal in Cities with Improved Hybrid Powertrains: Life Cycle and Sensitivity Analysis in Lisbon Case Study," Energies, MDPI, vol. 8(9), pages 1-32, September.
    7. Yoon, Sang Jun & Kim, Sangwon & Kim, Dong Kyu, 2019. "Optimization of local porosity in the electrode as an advanced channel for all-vanadium redox flow battery," Energy, Elsevier, vol. 172(C), pages 26-35.
    8. Tian, Xu & Geng, Yong & Sarkis, Joseph & Gao, Cuixia & Sun, Xin & Micic, Tatyana & Hao, Han & Wang, Xin, 2021. "Features of critical resource trade networks of lithium-ion batteries," Resources Policy, Elsevier, vol. 73(C).
    9. Kim, Jungmyung & Park, Heesung, 2018. "Impact of nanofluidic electrolyte on the energy storage capacity in vanadium redox flow battery," Energy, Elsevier, vol. 160(C), pages 192-199.
    10. Tao, Ye & Huang, Miaohua & Yang, Lan, 2018. "Data-driven optimized layout of battery electric vehicle charging infrastructure," Energy, Elsevier, vol. 150(C), pages 735-744.
    11. Philip Cooke, 2021. "The Lithium Wars: From Kokkola to the Congo for the 500 Mile Battery," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    12. Gye-Seong Lee & Dong-Hyun Kim & Jong-Ho Han & Myeong-Hwan Hwang & Hyun-Rok Cha, 2019. "Optimal Operating Point Determination Method Design for Range-Extended Electric Vehicles Based on Real Driving Tests," Energies, MDPI, vol. 12(5), pages 1-17, March.
    13. Weng, Guo-Ming & Li, Chi-Ying Vanessa & Chan, Kwong-Yu, 2019. "Three-electrolyte electrochemical energy storage systems using both anion- and cation-exchange membranes as separators," Energy, Elsevier, vol. 167(C), pages 1011-1018.
    14. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    15. Suphanut Kongwat & Thonn Homsnit & Chaimongkol Padungtree & Naphon Tonitiwong & Pornkasem Jongpradist & Pattaramon Jongpradist, 2022. "Safety Assessment and Crash Compatibility of Heavy Quadricycle under Frontal Impact Collisions," Sustainability, MDPI, vol. 14(20), pages 1-25, October.
    16. Bruno Jetin, 2020. "Who will control the electric vehicle market?," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 20(2), pages 156-177.
    17. Kim, Jungmyung & Park, Heesung, 2019. "Electrokinetic parameters of a vanadium redox flow battery with varying temperature and electrolyte flow rate," Renewable Energy, Elsevier, vol. 138(C), pages 284-291.
    18. Tejas-Dilipsing Patil & Emmanuel Vinot & Simone Ehrenberger & Rochdi Trigui & Eduardo Redondo-Iglesias, 2023. "Sensitivity Analysis of Battery Aging for Model-Based PHEV Use Scenarios," Energies, MDPI, vol. 16(4), pages 1-17, February.
    19. Saccani, Nicola & Perona, Marco & Bacchetti, Andrea, 2017. "The total cost of ownership of durable consumer goods: A conceptual model and an empirical application," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 1-13.
    20. Mahmoodi-k, Mehdi & Montazeri, Morteza & Madanipour, Vahid, 2021. "Simultaneous multi-objective optimization of a PHEV power management system and component sizing in real world traffic condition," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:2:p:430-:d:309299. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.