IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6138-d449518.html
   My bibliography  Save this article

Real-Time Pricing Scheme in Smart Grid Considering Time Preference: Game Theoretic Approach

Author

Listed:
  • Ri Piao

    (Department of Industrial Engineering, Seoul National University, Seoul 08826, Korea)

  • Deok-Joo Lee

    (Department of Industrial Engineering, Seoul National University, Seoul 08826, Korea)

  • Taegu Kim

    (Department of Industrial and Management Engineering, Hanbat National University, Daejeon 34158, Korea)

Abstract

Unbalanced power demand across time slots causes overload in a specific time zone. Various studies have proved that this can be mitigated through smart grid and price policy, but research on time preference is insufficient. This study proposed a real-time pricing model on a smart grid through a two-stage Stackelberg game model based on a utility function that reflects the user’s time preference. In the first step, the suppliers determine the profit-maximizing price, and then, the users decide the electricity usage schedule according to the given price. Nash equilibrium and comparative analysis of the proposed game explain the relationship between time preference, price, and usage. Additionally, a Monte Carlo simulation demonstrated the effect of the change in time preference distribution. The experimental results confirmed that the proposed real-time pricing method lowers peak-to-average ratio (PAR) and increases overall social welfare. This study is meaningful in that it presents a pricing method that considers both users’ and suppliers’ strategies with time preference. It is expected that the proposed method would contribute to a reduction in the need for additional power generation facilities through efficient operation of the smart grid.

Suggested Citation

  • Ri Piao & Deok-Joo Lee & Taegu Kim, 2020. "Real-Time Pricing Scheme in Smart Grid Considering Time Preference: Game Theoretic Approach," Energies, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6138-:d:449518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6138/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6138/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Flavio R. Arroyo M. & Luis J. Miguel, 2020. "The Role of Renewable Energies for the Sustainable Energy Governance and Environmental Policies for the Mitigation of Climate Change in Ecuador," Energies, MDPI, vol. 13(15), pages 1-18, July.
    2. Yu, Mengmeng & Hong, Seung Ho, 2016. "Supply–demand balancing for power management in smart grid: A Stackelberg game approach," Applied Energy, Elsevier, vol. 164(C), pages 702-710.
    3. Jong Hui Moon & Han Na Gwon & Gi Ryong Jo & Woo Yeong Choi & Kyung Soo Kook, 2020. "Stochastic Modeling Method of Plug-in Electric Vehicle Charging Demand for Korean Transmission System Planning," Energies, MDPI, vol. 13(17), pages 1-14, August.
    4. Md Mamun Ur Rashid & Fabrizio Granelli & Md. Alamgir Hossain & Md. Shafiul Alam & Fahad Saleh Al-Ismail & Ashish Kumar Karmaker & Md. Mijanur Rahaman, 2020. "Development of Home Energy Management Scheme for a Smart Grid Community," Energies, MDPI, vol. 13(17), pages 1-24, August.
    5. Juan Montoya & Ron Brandl & Keerthi Vishwanath & Jay Johnson & Rachid Darbali-Zamora & Adam Summers & Jun Hashimoto & Hiroshi Kikusato & Taha Selim Ustun & Nayeem Ninad & Estefan Apablaza-Arancibia & , 2020. "Advanced Laboratory Testing Methods Using Real-Time Simulation and Hardware-in-the-Loop Techniques: A Survey of Smart Grid International Research Facility Network Activities," Energies, MDPI, vol. 13(12), pages 1-38, June.
    6. Faruqui, Ahmad & George, Stephen S., 2002. "The Value of Dynamic Pricing in Mass Markets," The Electricity Journal, Elsevier, vol. 15(6), pages 45-55, July.
    7. Rodri­guez Ortega, Mari­a Pi­a & Pérez-Arriaga, J. Ignacio & Abbad, Juan Rivier & González, Jesús Peco, 2008. "Distribution network tariffs: A closed question?," Energy Policy, Elsevier, vol. 36(5), pages 1712-1725, May.
    8. Marta Ros Karlsdottir & Jukka Heinonen & Halldor Palsson & Olafur Petur Palsson, 2020. "High-Temperature Geothermal Utilization in the Context of European Energy Policy—Implications and Limitations," Energies, MDPI, vol. 13(12), pages 1-27, June.
    9. Andoni, Merlinda & Robu, Valentin & Früh, Wolf-Gerrit & Flynn, David, 2017. "Game-theoretic modeling of curtailment rules and network investments with distributed generation," Applied Energy, Elsevier, vol. 201(C), pages 174-187.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Qing & Lü, Shuaikang & Leng, Yajun, 2019. "A Nash-Stackelberg game approach in regional energy market considering users’ integrated demand response," Energy, Elsevier, vol. 175(C), pages 456-470.
    2. Dina A. Zaki & Mohamed Hamdy, 2022. "A Review of Electricity Tariffs and Enabling Solutions for Optimal Energy Management," Energies, MDPI, vol. 15(22), pages 1-17, November.
    3. Konstantakopoulos, Ioannis C. & Barkan, Andrew R. & He, Shiying & Veeravalli, Tanya & Liu, Huihan & Spanos, Costas, 2019. "A deep learning and gamification approach to improving human-building interaction and energy efficiency in smart infrastructure," Applied Energy, Elsevier, vol. 237(C), pages 810-821.
    4. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    5. Kley, Fabian & Lerch, Christian & Dallinger, David, 2011. "New business models for electric cars--A holistic approach," Energy Policy, Elsevier, vol. 39(6), pages 3392-3403, June.
    6. Sajjad Ali & Imran Khan & Sadaqat Jan & Ghulam Hafeez, 2021. "An Optimization Based Power Usage Scheduling Strategy Using Photovoltaic-Battery System for Demand-Side Management in Smart Grid," Energies, MDPI, vol. 14(8), pages 1-29, April.
    7. Nassima Radouane, 2022. "A Comprehensive Review of Composite Phase Change Materials (cPCMs) for Thermal Management Applications, Including Manufacturing Processes, Performance, and Applications," Energies, MDPI, vol. 15(21), pages 1-28, November.
    8. Kai Ma & Shubing Hu & Jie Yang & Chunxia Dou & Josep M. Guerrero, 2017. "Energy Trading and Pricing in Microgrids with Uncertain Energy Supply: A Three-Stage Hierarchical Game Approach," Energies, MDPI, vol. 10(5), pages 1-16, May.
    9. Wang, Tonghe & Hua, Haochen & Shi, Tianying & Wang, Rui & Sun, Yizhong & Naidoo, Pathmanathan, 2024. "A bi-level dispatch optimization of multi-microgrid considering green electricity consumption willingness under renewable portfolio standard policy," Applied Energy, Elsevier, vol. 356(C).
    10. Teresa Santos & Raquel Deus & Jorge Rocha & José António Tenedório, 2021. "Assessing Sustainable Urban Development Trends in a Dynamic Tourist Coastal Area Using 3D Spatial Indicators," Energies, MDPI, vol. 14(16), pages 1-22, August.
    11. Steele Santos, Paulo E. & Coradi Leme, Rafael & Galvão, Leandro, 2012. "On the electrical two-part tariff—The Brazilian perspective," Energy Policy, Elsevier, vol. 40(C), pages 123-130.
    12. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    13. Lang, Corey & Okwelum, Edson, 2015. "The mitigating effect of strategic behavior on the net benefits of a direct load control program," Energy Economics, Elsevier, vol. 49(C), pages 141-148.
    14. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    15. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    16. Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
    17. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    18. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    19. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    20. Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang & Rieger, Alexander & Thimmel, Markus, 2018. "One rate does not fit all: An empirical analysis of electricity tariffs for residential microgrids," Applied Energy, Elsevier, vol. 210(C), pages 800-814.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6138-:d:449518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.