IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4386-d403967.html
   My bibliography  Save this article

Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS)

Author

Listed:
  • Camilo Andres Mora

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C. 11021, Colombia)

  • Oscar Danilo Montoya

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C. 11021, Colombia
    Laboratorio Inteligente de Energía, Universidad Tecnológica de Bolívar, Cartagena 131001, Colombia)

  • Edwin Rivas Trujillo

    (Facultad de Ingeniería, Universidad Distrital Francisco José de Caldas, Bogotá D.C. 11021, Colombia)

Abstract

This article assesses the costs and benefits of incorporating battery energy storage systems (BESS) in transmission network expansion planning (TEP) over multiple time periods. We propose a mixed-integer programming model (MIP) for joint planning of the installation of battery energy storage systems (BESS) and construction of new transmission lines in multiple periods of time. The mathematical formulation of the presented model is based on the strategies of the agents of a transmission network to maximize their benefit, and on the operational restrictions of the power flows in transmission networks. This analysis is performed for the Garver 6 node test system takes into account the power losses in the lines and the restrictions for the energy stored in BESS. The power flows obtained with the MIP model are compared with AC power flows generated with specialized software for flows in power systems. This allows us to demonstrate the potential of models based on DC power flows to achieve approximate results applicable to the behavior and characteristics of real transmission networks. The results show that the BESS increase the net profit in the transmission networks and reduce their power losses.

Suggested Citation

  • Camilo Andres Mora & Oscar Danilo Montoya & Edwin Rivas Trujillo, 2020. "Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS)," Energies, MDPI, vol. 13(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4386-:d:403967
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ioannis Mexis & Grazia Todeschini, 2020. "Battery Energy Storage Systems in the United Kingdom: A Review of Current State-of-the-Art and Future Applications," Energies, MDPI, vol. 13(14), pages 1-31, July.
    2. Tsianikas, Stamatis & Zhou, Jian & Birnie, Dunbar P. & Coit, David W., 2019. "Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems," Applied Energy, Elsevier, vol. 256(C).
    3. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    4. Kevin Marnell & Manasseh Obi & Robert Bass, 2019. "Transmission-Scale Battery Energy Storage Systems: A Systematic Literature Review," Energies, MDPI, vol. 12(23), pages 1-31, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamdi Abdi & Mansour Moradi & Sara Lumbreras, 2021. "Metaheuristics and Transmission Expansion Planning: A Comparative Case Study," Energies, MDPI, vol. 14(12), pages 1-23, June.
    2. Luis Fernando Grisales-Noreña & Bonie Johana Restrepo-Cuestas & Brandon Cortés-Caicedo & Jhon Montano & Andrés Alfonso Rosales-Muñoz & Marco Rivera, 2022. "Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review," Energies, MDPI, vol. 16(1), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    3. He, Qing & Li, Guoqing & Lu, Chang & Du, Dongmei & Liu, Wenyi, 2019. "A compressed air energy storage system with variable pressure ratio and its operation control," Energy, Elsevier, vol. 169(C), pages 881-894.
    4. Hasan, Nor Shahida & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Omar, Wan Zaidi Wan & Rosmin, Norzanah, 2016. "Improving power grid performance using parallel connected Compressed Air Energy Storage and wind turbine system," Renewable Energy, Elsevier, vol. 96(PA), pages 498-508.
    5. Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Mishra, Dillip Kumar & Li, Li & Zhang, Jiangfeng & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Application of small-scale compressed air energy storage in the daily operation of an active distribution system," Energy, Elsevier, vol. 231(C).
    6. Fallahi, Farhad & Nick, Mostafa & Riahy, Gholam H. & Hosseinian, Seyed Hossein & Doroudi, Aref, 2014. "The value of energy storage in optimal non-firm wind capacity connection to power systems," Renewable Energy, Elsevier, vol. 64(C), pages 34-42.
    7. Obi, Manasseh & Jensen, S.M. & Ferris, Jennifer B. & Bass, Robert B., 2017. "Calculation of levelized costs of electricity for various electrical energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 908-920.
    8. Linas Gelažanskas & Kelum A. A. Gamage, 2016. "Distributed Energy Storage Using Residential Hot Water Heaters," Energies, MDPI, vol. 9(3), pages 1-13, February.
    9. Wang, Xiaokui & Bamisile, Olusola & Chen, Shuheng & Xu, Xiao & Luo, Shihua & Huang, Qi & Hu, Weihao, 2022. "Decarbonization of China's electricity systems with hydropower penetration and pumped-hydro storage: Comparing the policies with a techno-economic analysis," Renewable Energy, Elsevier, vol. 196(C), pages 65-83.
    10. Ann-Kathrin Klaas & Hans-Peter Beck, 2021. "A MILP Model for Revenue Optimization of a Compressed Air Energy Storage Plant with Electrolysis," Energies, MDPI, vol. 14(20), pages 1-21, October.
    11. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.
    12. Ayotunde A. Adeyemo & Elisabetta Tedeschi, 2023. "Technology Suitability Assessment of Battery Energy Storage System for High-Energy Applications on Offshore Oil and Gas Platforms," Energies, MDPI, vol. 16(18), pages 1-38, September.
    13. Mansour Alramlawi & Pu Li, 2024. "Chance-Constrained Optimal Design of PV-Based Microgrids under Grid Blackout Uncertainties," Energies, MDPI, vol. 17(8), pages 1-15, April.
    14. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    15. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    16. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
    17. Foley, A. & Díaz Lobera, I., 2013. "Impacts of compressed air energy storage plant on an electricity market with a large renewable energy portfolio," Energy, Elsevier, vol. 57(C), pages 85-94.
    18. Lamy, Julian & Azevedo, Inês L. & Jaramillo, Paulina, 2014. "The role of energy storage in accessing remote wind resources in the Midwest," Energy Policy, Elsevier, vol. 68(C), pages 123-131.
    19. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    20. Safaei, Hossein & Keith, David W. & Hugo, Ronald J., 2013. "Compressed air energy storage (CAES) with compressors distributed at heat loads to enable waste heat utilization," Applied Energy, Elsevier, vol. 103(C), pages 165-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4386-:d:403967. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.