IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3932-d393108.html
   My bibliography  Save this article

U.S. Greenhouse Gas Emission Bottlenecks: Prioritization of Targets for Climate Liability

Author

Listed:
  • Alexis S. Pascaris

    (Environmental & Energy Policy, Michigan Technological University, Houghton, MI 4993, USA)

  • Joshua M. Pearce

    (Environmental & Energy Policy, Michigan Technological University, Houghton, MI 4993, USA
    Department of Material Science & Engineering and Department of Electrical & Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA)

Abstract

Due to market failures that allow uncompensated negative externalities from burning fossil fuels, there has been a growing call for climate change-related litigation targeting polluting companies. To determine the most intensive carbon dioxide (CO 2 )-emitting facilities in order prioritize liability for climate lawsuits, and risk mitigation strategies for identified companies as well as their insurers and investors, two methods are compared: (1) the conventional point-source method and (2) the proposed bottleneck method, which considers all emissions that a facility enables rather than only what it emits. Results indicate that the top ten CO 2 emission bottlenecks in the U.S. are predominantly oil (47%) and natural gas (44%) pipelines. Compared to traditional point-source emissions methods, this study has demonstrated that a comprehensive bottleneck calculation is more effective. By employing an all-inclusive approach to calculating a polluting entity’s CO 2 emissions, legal actions may be more accurately focused on major polluters, and these companies may preemptively mitigate their pollution to curb vulnerability to litigation and risk. The bottleneck methodology reveals the discrete link in the chain of the fossil-fuel lifecycle that is responsible for the largest amount of emissions, enabling informed climate change mitigation and risk management efforts.

Suggested Citation

  • Alexis S. Pascaris & Joshua M. Pearce, 2020. "U.S. Greenhouse Gas Emission Bottlenecks: Prioritization of Targets for Climate Liability," Energies, MDPI, vol. 13(15), pages 1-28, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3932-:d:393108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heidari, Negin & Pearce, Joshua M., 2016. "A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 899-908.
    2. Noori, Mehdi & Tatari, Omer, 2016. "Development of an agent-based model for regional market penetration projections of electric vehicles in the United States," Energy, Elsevier, vol. 96(C), pages 215-230.
    3. O.E. Frihy, 2003. "The Nile delta-Alexandria coast: vulnerability to sea-level rise, consequences and adaptation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(2), pages 115-138, June.
    4. Krackeler, Tom & Schipper, Lee & Sezgen, Osman, 1998. "Carbon dioxide emissions in OECD service sectors: the critical role of electricity use," Energy Policy, Elsevier, vol. 26(15), pages 1137-1152, December.
    5. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    6. Myles Allen, 2003. "Liability for climate change," Nature, Nature, vol. 421(6926), pages 891-892, February.
    7. Qian Zhang & Xunmin Ou & Xiaoyu Yan & Xiliang Zhang, 2017. "Electric Vehicle Market Penetration and Impacts on Energy Consumption and CO 2 Emission in the Future: Beijing Case," Energies, MDPI, vol. 10(2), pages 1-15, February.
    8. Tietenberg, T H, 1990. "Economic Instruments for Environmental Regulation," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 6(1), pages 17-33, Spring.
    9. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Sompolska-Rzechuła & Agnieszka Kurdyś-Kujawska, 2021. "Towards Understanding Interactions between Sustainable Development Goals: The Role of Climate-Well-Being Linkages. Experiences of EU Countries," Energies, MDPI, vol. 14(7), pages 1-20, April.
    2. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Joshua M. Pearce & Richard Parncutt, 2023. "Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy," Energies, MDPI, vol. 16(16), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidari, Negin & Pearce, Joshua M., 2016. "A review of greenhouse gas emission liabilities as the value of renewable energy for mitigating lawsuits for climate change related damages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 899-908.
    2. Joshua M. Pearce & Emily Prehoda, 2019. "Could 79 People Solarize the U.S. Electric Grid?," Societies, MDPI, vol. 9(1), pages 1-27, March.
    3. Jean Tirole, 2008. "Some Economics of Global Warming," Rivista di Politica Economica, SIPI Spa, vol. 98(6), pages 9-42, November-.
    4. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    5. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    6. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    7. Olaleye, Olaitan & Baker, Erin, 2015. "Large scale scenario analysis of future low carbon energy options," Energy Economics, Elsevier, vol. 49(C), pages 203-216.
    8. Dobes Leo & Jotzo Frank & Stern David I., 2014. "The Economics of Global Climate Change: A Historical Literature Review," Review of Economics, De Gruyter, vol. 65(3), pages 281-320, December.
    9. Simon Dietz & Frederick van der Ploeg & Armon Rezai & Frank Venmans, 2021. "Are Economists Getting Climate Dynamics Right and Does It Matter?," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 8(5), pages 895-921.
    10. Graham Dawson, 2013. "Austrian economics and climate change," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 26(2), pages 183-206, June.
    11. Clive L. Spash & Alex Y. Lo, 2012. "Australia's Carbon Tax: A Sheep in Wolf's Clothing?," The Economic and Labour Relations Review, , vol. 23(1), pages 67-85, February.
    12. Joshua M. Pearce & Richard Parncutt, 2023. "Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy," Energies, MDPI, vol. 16(16), pages 1-20, August.
    13. Yingying Lu & David I. Stern, 2016. "Substitutability and the Cost of Climate Mitigation Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(1), pages 81-107, May.
    14. Rebecca Newman & Ilan Noy, 2023. "The global costs of extreme weather that are attributable to climate change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Benjamin L. Preston & Kirstin Dow & Frans Berkhout, 2013. "The Climate Adaptation Frontier," Sustainability, MDPI, vol. 5(3), pages 1-25, March.
    16. repec:ecr:col022:39150 is not listed on IDEAS
    17. Yalew, Amsalu W. & Hirte, Georg & Lotze-Campen, Hermann & Tscharaktschiew, Stefan, 2017. "Economic effects of climate change in developing countries: Economy-wide and regional analysis for Ethiopia," CEPIE Working Papers 10/17, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    18. Hayibo, Koami Soulemane & Pearce, Joshua M., 2021. "A review of the value of solar methodology with a case study of the U.S. VOS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    19. George A. Gonzalez, 2016. "Transforming Energy: Solving Climate Change with Technology Policy . New York : Cambridge University Press . 360 pages. ISBN 9781107614970, $29.99 paperback. Anthony Patt , 2015 ," Review of Policy Research, Policy Studies Organization, vol. 33(1), pages 111-113, January.
    20. Joshua M. Pearce, 2019. "Towards Quantifiable Metrics Warranting Industry-Wide Corporate Death Penalties," Social Sciences, MDPI, vol. 8(2), pages 1-13, February.
    21. Amsalu Woldie Yalew & Georg Hirte & Hermann Lotze-Campen & Stefan Tscharaktschiew, 2018. "Climate Change, Agriculture, and Economic Development in Ethiopia," Sustainability, MDPI, vol. 10(10), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3932-:d:393108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.