IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3293-d376746.html
   My bibliography  Save this article

Voltage Control Methodologies in Active Distribution Networks

Author

Listed:
  • Valentin Ilea

    (Energy Department, Politecnico di Milano, 20019 Milan, Italy)

  • Cristian Bovo

    (Energy Department, Politecnico di Milano, 20019 Milan, Italy)

  • Davide Falabretti

    (Energy Department, Politecnico di Milano, 20019 Milan, Italy)

  • Marco Merlo

    (Energy Department, Politecnico di Milano, 20019 Milan, Italy)

  • Carlo Arrigoni

    (Smart Infrastructure, Digital Grid, Siemens S.p.a., 20019 Milan, Italy)

  • Roberto Bonera

    (Freelance Senior Analyst and Developer, 20019 Milano, Italy)

  • Marco Rodolfi

    (Freelance Senior Analyst and Developer, 20019 Milano, Italy)

Abstract

Renewable Energy Sources are becoming widely spread, as they are sustainable and low-carbon emission. They are mostly penetrating the MV Distribution Networks as Distributed Generators, which has determined the evolution of the networks’ control and supervision systems, from almost a complete lack to becoming fully centralized. This paper proposes innovative voltage control architectures for the distribution networks, tailored for different development levels of the control and supervision systems encountered in real life: a Coordinated Control for networks with basic development, and an optimization-based Centralized Control for networks with fully articulated systems. The Centralized Control fits the requirements of the network: the challenging harmonization of the generator’s capability curves with the regulatory framework, and modelling of the discrete control of the On-Load Tap Changer transformer. A realistic network is used for tests and comparisons with the Local Strategy currently specified by regulations. The proposed Coordinated Control gives much better results with respect to the Local Strategy, in terms of loss minimization and voltage violations mitigation, and can be used for networks with poorly developed supervision and control systems, while Centralized Control proves the best solution, but can be applied only in fully supervised and controlled networks.

Suggested Citation

  • Valentin Ilea & Cristian Bovo & Davide Falabretti & Marco Merlo & Carlo Arrigoni & Roberto Bonera & Marco Rodolfi, 2020. "Voltage Control Methodologies in Active Distribution Networks," Energies, MDPI, vol. 13(12), pages 1-32, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3293-:d:376746
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3293/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3293/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel-Leon Schultis, 2019. "Comparison of Local Volt/var Control Strategies for PV Hosting Capacity Enhancement of Low Voltage Feeders," Energies, MDPI, vol. 12(8), pages 1-27, April.
    2. David Sebastian Stock & Francesco Sala & Alberto Berizzi & Lutz Hofmann, 2018. "Optimal Control of Wind Farms for Coordinated TSO-DSO Reactive Power Management," Energies, MDPI, vol. 11(1), pages 1-25, January.
    3. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Amankwah Adu & Alberto Berizzi & Francesco Conte & Fabio D’Agostino & Valentin Ilea & Fabio Napolitano & Tadeo Pontecorvo & Andrea Vicario, 2022. "Power System Stability Analysis of the Sicilian Network in the 2050 OSMOSE Project Scenario," Energies, MDPI, vol. 15(10), pages 1-33, May.
    2. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    3. Guilherme Gonçalves Pinheiro & Robson Bauwelz Gonzatti & Carlos Henrique da Silva & Rondineli Rodrigues Pereira & Bruno P. Braga Guimarães & João Gabriel Luppi Foster & Germano Lambert-Torres & Klever, 2023. "Comparison of Control Techniques for Harmonic Isolation in Series VSC-Based Power Flow Controller in Distribution Grids," Energies, MDPI, vol. 16(6), pages 1-27, March.
    4. Guilherme Gonçalves Pinheiro & Carlos Henrique da Silva & Bruno P. B. Guimarães & Robson Bauwelz Gonzatti & Rondineli Rodrigues Pereira & Wilson Cesar Sant’Ana & Germano Lambert-Torres & Joselino Sant, 2022. "Power Flow Control Using Series Voltage Source Converters in Distribution Grids," Energies, MDPI, vol. 15(9), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    2. Cong Liu & Jingyang Zhou & Yi Pan & Zhiyi Li & Yifei Wang & Dan Xu & Qiang Ding & Zhiqiang Luo & Mohammad Shahidehpour, 2019. "Multi-period Market Operation of Transmission-Distribution Systems Based on Heterogeneous Decomposition and Coordination," Energies, MDPI, vol. 12(16), pages 1-20, August.
    3. Marius Buchmann, 2019. "How decentralization drives a change of the institutional framework on the distribution grid level in the electricity sector – the case of local congestion markets," Bremen Energy Working Papers 0031, Bremen Energy Research.
    4. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    5. Bahramara, Salah & Sheikhahmadi, Pouria & Golpîra, Hêmin, 2019. "Co-optimization of energy and reserve in standalone micro-grid considering uncertainties," Energy, Elsevier, vol. 176(C), pages 792-804.
    6. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Vosughi, Amirkhosro & Tamimi, Ali & King, Alexandra Beatrice & Majumder, Subir & Srivastava, Anurag K., 2022. "Cyber–physical vulnerability and resiliency analysis for DER integration: A review, challenges and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    8. Henryk Majchrzak & Michał Kozioł, 2021. "Analysis of Various Options for Balancing Power Systems’ Peak Load," Energies, MDPI, vol. 14(2), pages 1-20, January.
    9. Neuhoff, Karsten & Richstein, Jörn, 2017. "TSO-DSO-PX Cooperation. Report on the key elements of debate from a workshop of the Future Power Market Platform," EconStor Research Reports 167313, ZBW - Leibniz Information Centre for Economics.
    10. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    11. Heilmann, Erik & Klempp, Nikolai & Wetzel, Heike, 2020. "Design of regional flexibility markets for electricity: A product classification framework for and application to German pilot projects," Utilities Policy, Elsevier, vol. 67(C).
    12. Kolster, Till & Krebs, Rainer & Niessen, Stefan & Duckheim, Mathias, 2020. "The contribution of distributed flexibility potentials to corrective transmission system operation for strongly renewable energy systems," Applied Energy, Elsevier, vol. 279(C).
    13. Rajabi, A. & Elphick, S. & David, J. & Pors, A. & Robinson, D., 2022. "Innovative approaches for assessing and enhancing the hosting capacity of PV-rich distribution networks: An Australian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Anibal Sanjab & H'el`ene Le Cadre & Yuting Mou, 2021. "TSO-DSOs Stable Cost Allocation for the Joint Procurement of Flexibility: A Cooperative Game Approach," Papers 2111.12830, arXiv.org.
    15. Heymann, Fabian & Milojevic, Tatjana & Covatariu, Andrei & Verma, Piyush, 2023. "Digitalization in decarbonizing electricity systems – Phenomena, regional aspects, stakeholders, use cases, challenges and policy options," Energy, Elsevier, vol. 262(PB).
    16. Rabab Haider & David D'Achiardi & Venkatesh Venkataramanan & Anurag Srivastava & Anjan Bose & Anuradha M. Annaswamy, 2021. "Reinventing the Utility for DERs: A Proposal for a DSO-Centric Retail Electricity Market," Papers 2102.01269, arXiv.org.
    17. Schittekatte, Tim & Meeus, Leonardo, 2020. "Flexibility markets: Q&A with project pioneers," Utilities Policy, Elsevier, vol. 63(C).
    18. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    19. Talal Alazemi & Mohamed Darwish & Mohammed Radi, 2022. "TSO/DSO Coordination for RES Integration: A Systematic Literature Review," Energies, MDPI, vol. 15(19), pages 1-26, October.
    20. Chen, Ting & Vandendriessche, Frederik, 2023. "Evolution of the EU legal framework for promoting RES-E: A market compatible paradigm shift?," Utilities Policy, Elsevier, vol. 83(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3293-:d:376746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.