IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006785.html
   My bibliography  Save this article

Cyber–physical vulnerability and resiliency analysis for DER integration: A review, challenges and research needs

Author

Listed:
  • Vosughi, Amirkhosro
  • Tamimi, Ali
  • King, Alexandra Beatrice
  • Majumder, Subir
  • Srivastava, Anurag K.

Abstract

High penetration of renewable and sustainable Distributed Energy Resources (DER) into the traditional distribution system requires a well-coordinated control strategy for the improvement of system-wide reliability and resiliency. Implementation of such a holistic control architecture requires a flexible, near real-time, and bi-directional communication framework for facilitating the participation of various agents in a multi-vendor heterogeneous smart grid. While the sustainability of energy generation is ensured, this exposes the smart grid to extrinsic cyber threats, and appropriate defense mechanism(s) must be deployed to guarantee continued reliability and resiliency of the power grid. The comprehensive literature review presented in this paper discusses the latest trends in the DER control schemes with fast communication requirements and their accompanying cyber–physical vulnerabilities. These control schemes are compared and contrasted for various traits. A three-level DER system architecture has been depicted, facilitating the deployment of these control schemes. The current developments of standard communication protocols, key security mechanisms, and best practices along major standards and guidelines are explored. The impacts of different attack types with miscellaneous DER functions based on various control schemes and associated mitigation solutions are also provided. Finally, challenges and future research directions for limiting cyber-power susceptibility to enhance resiliency are summarized. The work presented here will help us enabling a cyber-resilient and sustainable smart electric grid.

Suggested Citation

  • Vosughi, Amirkhosro & Tamimi, Ali & King, Alexandra Beatrice & Majumder, Subir & Srivastava, Anurag K., 2022. "Cyber–physical vulnerability and resiliency analysis for DER integration: A review, challenges and research needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006785
    DOI: 10.1016/j.rser.2022.112794
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006785
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112794?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahmud, Khizir & Khan, Behram & Ravishankar, Jayashri & Ahmadi, Abdollah & Siano, Pierluigi, 2020. "An internet of energy framework with distributed energy resources, prosumers and small-scale virtual power plants: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Ángel Silos & Aleix Señís & Ramon Martín De Pozuelo & Agustín Zaballos, 2017. "Using IEC 61850 GOOSE Service for Adaptive ANSI 67/67N Protection in Ring Main Systems with Distributed Energy Resources," Energies, MDPI, vol. 10(11), pages 1-23, October.
    3. Ustun, Taha Selim & Ozansoy, Cagil & Zayegh, Aladin, 2011. "Recent developments in microgrids and example cases around the world—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4030-4041.
    4. Gerard, Helena & Rivero Puente, Enrique Israel & Six, Daan, 2018. "Coordination between transmission and distribution system operators in the electricity sector: A conceptual framework," Utilities Policy, Elsevier, vol. 50(C), pages 40-48.
    5. Aditya Sundararajan & Aniket Chavan & Danish Saleem & Arif I. Sarwat, 2018. "A Survey of Protocol-Level Challenges and Solutions for Distributed Energy Resource Cyber-Physical Security," Energies, MDPI, vol. 11(9), pages 1-21, September.
    6. Morris, Thomas & Srivastava, Anurag & Reaves, Bradley & Gao, Wei & Pavurapu, Kalyan & Reddi, Ram, 2011. "A control system testbed to validate critical infrastructure protection concepts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 4(2), pages 88-103.
    7. Jianhua Zhang & Adarsh Hasandka & Jin Wei & S. M. Shafiul Alam & Tarek Elgindy & Anthony R. Florita & Bri-Mathias Hodge, 2018. "Hybrid Communication Architectures for Distributed Smart Grid Applications," Energies, MDPI, vol. 11(4), pages 1-16, April.
    8. Howell, Shaun & Rezgui, Yacine & Hippolyte, Jean-Laurent & Jayan, Bejay & Li, Haijiang, 2017. "Towards the next generation of smart grids: Semantic and holonic multi-agent management of distributed energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 193-214.
    9. Goldenberg, Niv & Wool, Avishai, 2013. "Accurate modeling of Modbus/TCP for intrusion detection in SCADA systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(2), pages 63-75.
    10. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2017. "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 341-363.
    11. Marzal, Silvia & Salas, Robert & González-Medina, Raúl & Garcerá, Gabriel & Figueres, Emilio, 2018. "Current challenges and future trends in the field of communication architectures for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3610-3622.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Jiaqi & Ma, Liya & Li, Chenchen & Liu, Nian & Zhang, Jianhua, 2022. "A comprehensive review of standards for distributed energy resource grid-integration and microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    3. Zhou, Hou Sheng & Passey, Rob & Bruce, Anna & Sproul, Alistair B., 2021. "A case study on the behaviour of residential battery energy storage systems during network demand peaks," Renewable Energy, Elsevier, vol. 180(C), pages 712-724.
    4. Urrea, Claudio & Morales, Claudio & Kern, John, 2016. "Implementation of error detection and correction in the Modbus-RTU serial protocol," International Journal of Critical Infrastructure Protection, Elsevier, vol. 15(C), pages 27-37.
    5. Wang, Richard & Lam, Chor-Man & Hsu, Shu-Chien & Chen, Jieh-Haur, 2019. "Life cycle assessment and energy payback time of a standalone hybrid renewable energy commercial microgrid: A case study of Town Island in Hong Kong," Applied Energy, Elsevier, vol. 250(C), pages 760-775.
    6. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    7. Alvaro Llaria & Jessye Dos Santos & Guillaume Terrasson & Zina Boussaada & Christophe Merlo & Octavian Curea, 2021. "Intelligent Buildings in Smart Grids: A Survey on Security and Privacy Issues Related to Energy Management," Energies, MDPI, vol. 14(9), pages 1-37, May.
    8. Lilia Tightiz & Hyosik Yang & Mohammad Jalil Piran, 2020. "A Survey on Enhanced Smart Micro-Grid Management System with Modern Wireless Technology Contribution," Energies, MDPI, vol. 13(9), pages 1-21, May.
    9. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    10. Waldemar Niewiadomski & Aleksandra Baczyńska, 2021. "Advanced Flexibility Market for System Services Based on TSO–DSO Coordination and Usage of Distributed Resources," Energies, MDPI, vol. 14(17), pages 1-31, September.
    11. Yuanyuan, Zhang & Huiru, Zhao & Bingkang, Li, 2023. "Distributionally robust comprehensive declaration strategy of virtual power plant participating in the power market considering flexible ramping product and uncertainties," Applied Energy, Elsevier, vol. 343(C).
    12. Wu, Xifeng & Xu, Yuechao & Lou, Yuting & Chen, Yu, 2018. "Low carbon transition in a distributed energy system regulated by localized energy markets," Energy Policy, Elsevier, vol. 122(C), pages 474-485.
    13. Bhuiyan, Erphan A. & Hossain, Md. Zahid & Muyeen, S.M. & Fahim, Shahriar Rahman & Sarker, Subrata K. & Das, Sajal K., 2021. "Towards next generation virtual power plant: Technology review and frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    14. Knowles, William & Prince, Daniel & Hutchison, David & Disso, Jules Ferdinand Pagna & Jones, Kevin, 2015. "A survey of cyber security management in industrial control systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 9(C), pages 52-80.
    15. Agostini, Marco & Bertolini, Marina & Coppo, Massimiliano & Fontini, Fulvio, 2021. "The participation of small-scale variable distributed renewable energy sources to the balancing services market," Energy Economics, Elsevier, vol. 97(C).
    16. Irene Arcelay & Aitor Goti & Aitor Oyarbide-Zubillaga & Tugce Akyazi & Elisabete Alberdi & Pablo Garcia-Bringas, 2021. "Definition of the Future Skills Needs of Job Profiles in the Renewable Energy Sector," Energies, MDPI, vol. 14(9), pages 1-23, May.
    17. Jiakai Hu & Chuanwen Jiang & Yangyang Liu, 2019. "Short-Term Bidding Strategy for a Price-Maker Virtual Power Plant Based on Interval Optimization," Energies, MDPI, vol. 12(19), pages 1-22, September.
    18. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    19. Rebenaque, Olivier & Schmitt, Carlo & Schumann, Klemens & Dronne, Théo & Roques, Fabien, 2023. "Success of local flexibility market implementation: A review of current projects," Utilities Policy, Elsevier, vol. 80(C).
    20. Megan Culler & Hannah Burroughs, 2021. "Cybersecurity Considerations for Grid-Connected Batteries with Hardware Demonstrations," Energies, MDPI, vol. 14(11), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.